Infinite-horizon risk-sensitive performance criteria for translation
invariant networks of linear quantum stochastic systems
- URL: http://arxiv.org/abs/2202.02261v1
- Date: Fri, 4 Feb 2022 17:44:14 GMT
- Title: Infinite-horizon risk-sensitive performance criteria for translation
invariant networks of linear quantum stochastic systems
- Authors: Igor G. Vladimirov, Ian R. Petersen
- Abstract summary: This paper is concerned with networks of identical linear quantum systems which interact with each other and external bosonic fields.
The systems are associated with sites of a multidimensional lattice and are governed by coupled linear quantum differential equations (QSDEs)
A quadratic-exponential functional (QEF) is considered as a risk-sensitive performance criterion for a finite fragment of the network over a bounded time interval.
- Score: 2.0508733018954843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is concerned with networks of identical linear quantum stochastic
systems which interact with each other and external bosonic fields in a
translation invariant fashion. The systems are associated with sites of a
multidimensional lattice and are governed by coupled linear quantum stochastic
differential equations (QSDEs). The block Toeplitz coefficients of these QSDEs
are specified by the energy and coupling matrices which quantify the
Hamiltonian and coupling operators for the component systems. We discuss the
invariant Gaussian quantum state of the network when it satisfies a stability
condition and is driven by statistically independent vacuum fields. A
quadratic-exponential functional (QEF) is considered as a risk-sensitive
performance criterion for a finite fragment of the network over a bounded time
interval. This functional involves a quadratic function of dynamic variables of
the component systems with a block Toeplitz weighting matrix. Assuming the
invariant state, we study the spatio-temporal asymptotic rate of the QEF per
unit time and per lattice site in the thermodynamic limit of unboundedly
growing time horizons and fragments of the lattice. A spatio-temporal
frequency-domain formula is obtained for the QEF rate in terms of two spectral
functions associated with the real and imaginary parts of the invariant quantum
covariance kernel of the network variables. A homotopy method and asymptotic
expansions for evaluating the QEF rate are also discussed.
Related papers
- Schrödingerization based Quantum Circuits for Maxwell's Equation with time-dependent source terms [24.890270804373824]
This paper explicitly constructs a quantum circuit for Maxwell's equations with perfect electric conductor (PEC) boundary conditions.
We show that quantum algorithms constructed using Schr"odingerisation exhibit acceleration in computational complexity compared to the classical Finite Difference Time Domain (FDTD) format.
arXiv Detail & Related papers (2024-11-17T08:15:37Z) - Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Quantum simulation of the Fokker-Planck equation via Schrodingerization [33.76659022113328]
This paper studies a quantum simulation technique for solving the Fokker-Planck equation.
We employ the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations.
arXiv Detail & Related papers (2024-04-21T08:53:27Z) - Decoherence time control by interconnection for finite-level quantum
memory systems [0.7252027234425334]
This paper is concerned with open quantum systems whose dynamic variables have an algebraic structure.
The Hamiltonian and the operators of coupling the system to the external bosonic fields depend linearly on the system variables.
We consider the decoherence time over the energy parameters of the system and obtain a condition under which the zero Hamiltonian provides a suboptimal solution.
arXiv Detail & Related papers (2023-11-04T01:21:55Z) - Measuring decoherence by commutation relations decay for quasilinear
quantum stochastic systems [2.0508733018954843]
We study a class of open quantum systems with an algebraic structure of dynamic variables.
The Hamiltonian and the operators of coupling of the system to the external bosonic fields depend linearly on the system variables.
We quantify the decoherence in terms of the perturbation rate of the commutation relations decay.
arXiv Detail & Related papers (2022-10-13T05:53:08Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - State-space computation of quadratic-exponential functional rates for
linear quantum stochastic systems [2.0508733018954843]
We use a frequency-domain representation of the QEF growth rate for the invariant Gaussian quantum state of the system.
A truncation of this shaping filter allows the QEF rate to be computed with any accuracy.
arXiv Detail & Related papers (2022-01-25T17:36:19Z) - Quadratic-exponential functionals of Gaussian quantum processes [1.7360163137925997]
quadratic-exponential functionals (QEFs) arise as robust performance criteria in control problems.
We develop a randomised representation for the QEF using a Karhunen-Loeve expansion of the quantum process.
For stationary Gaussian quantum processes, we establish a frequency-domain formula for the QEF rate.
arXiv Detail & Related papers (2021-03-16T18:58:39Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Moment dynamics and observer design for a class of quasilinear quantum
stochastic systems [2.0508733018954843]
This paper is concerned with a class of open quantum systems whose dynamic variables have an algebraic structure.
The system interacts with external bosonic fields, and its Hamiltonian and coupling operators depend linearly on the system variables.
The tractability of the moment dynamics is also used for mean square optimal Luenberger observer design in a measurement-based filtering problem for a quasilinear quantum plant.
arXiv Detail & Related papers (2020-12-15T11:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.