LTU Attacker for Membership Inference
- URL: http://arxiv.org/abs/2202.02278v1
- Date: Fri, 4 Feb 2022 18:06:21 GMT
- Title: LTU Attacker for Membership Inference
- Authors: Joseph Pedersen, Rafael Mu\~noz-G\'omez, Jiangnan Huang, Haozhe Sun,
Wei-Wei Tu, Isabelle Guyon
- Abstract summary: We address the problem of defending predictive models against membership inference attacks.
Both utility and privacy are evaluated with an external apparatus including an Attacker and an Evaluator.
We prove that, under certain conditions, even a "na"ive" LTU Attacker can achieve lower bounds on privacy loss with simple attack strategies.
- Score: 23.266710407178078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of defending predictive models, such as machine
learning classifiers (Defender models), against membership inference attacks,
in both the black-box and white-box setting, when the trainer and the trained
model are publicly released. The Defender aims at optimizing a dual objective:
utility and privacy. Both utility and privacy are evaluated with an external
apparatus including an Attacker and an Evaluator. On one hand, Reserved data,
distributed similarly to the Defender training data, is used to evaluate
Utility; on the other hand, Reserved data, mixed with Defender training data,
is used to evaluate membership inference attack robustness. In both cases
classification accuracy or error rate are used as the metric: Utility is
evaluated with the classification accuracy of the Defender model; Privacy is
evaluated with the membership prediction error of a so-called
"Leave-Two-Unlabeled" LTU Attacker, having access to all of the Defender and
Reserved data, except for the membership label of one sample from each. We
prove that, under certain conditions, even a "na\"ive" LTU Attacker can achieve
lower bounds on privacy loss with simple attack strategies, leading to concrete
necessary conditions to protect privacy, including: preventing over-fitting and
adding some amount of randomness. However, we also show that such a na\"ive LTU
Attacker can fail to attack the privacy of models known to be vulnerable in the
literature, demonstrating that knowledge must be complemented with strong
attack strategies to turn the LTU Attacker into a powerful means of evaluating
privacy. Our experiments on the QMNIST and CIFAR-10 datasets validate our
theoretical results and confirm the roles of over-fitting prevention and
randomness in the algorithms to protect against privacy attacks.
Related papers
- Privacy-preserving Universal Adversarial Defense for Black-box Models [20.968518031455503]
We introduce DUCD, a universal black-box defense method that does not require access to the target model's parameters or architecture.
Our approach involves querying the target model by querying it with data, creating a white-box surrogate while preserving data privacy.
Experiments on multiple image classification datasets show that DUCD not only outperforms existing black-box defenses but also matches the accuracy of white-box defenses.
arXiv Detail & Related papers (2024-08-20T08:40:39Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuard is a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks.
The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks.
arXiv Detail & Related papers (2024-03-05T17:41:35Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Purifier: Defending Data Inference Attacks via Transforming Confidence
Scores [27.330482508047428]
We propose a method, namely PURIFIER, to defend against membership inference attacks.
Experiments show that PURIFIER helps defend membership inference attacks with high effectiveness and efficiency.
PURIFIER is also effective in defending adversarial model inversion attacks and attribute inference attacks.
arXiv Detail & Related papers (2022-12-01T16:09:50Z) - Debiasing Learning for Membership Inference Attacks Against Recommender
Systems [79.48353547307887]
Learned recommender systems may inadvertently leak information about their training data, leading to privacy violations.
We investigate privacy threats faced by recommender systems through the lens of membership inference.
We propose a Debiasing Learning for Membership Inference Attacks against recommender systems (DL-MIA) framework that has four main components.
arXiv Detail & Related papers (2022-06-24T17:57:34Z) - Defense Against Gradient Leakage Attacks via Learning to Obscure Data [48.67836599050032]
Federated learning is considered as an effective privacy-preserving learning mechanism.
In this paper, we propose a new defense method to protect the privacy of clients' data by learning to obscure data.
arXiv Detail & Related papers (2022-06-01T21:03:28Z) - One Parameter Defense -- Defending against Data Inference Attacks via
Differential Privacy [26.000487178636927]
Machine learning models are vulnerable to data inference attacks, such as membership inference and model inversion attacks.
Most existing defense methods only protect against membership inference attacks.
We propose a differentially private defense method that handles both types of attacks in a time-efficient manner.
arXiv Detail & Related papers (2022-03-13T06:06:24Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z) - Label-Only Membership Inference Attacks [67.46072950620247]
We introduce label-only membership inference attacks.
Our attacks evaluate the robustness of a model's predicted labels under perturbations.
We find that training models with differential privacy and (strong) L2 regularization are the only known defense strategies.
arXiv Detail & Related papers (2020-07-28T15:44:31Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
We show that prior work on membership inference attacks may severely underestimate the privacy risks.
We first propose to benchmark membership inference privacy risks by improving existing non-neural network based inference attacks.
We then introduce a new approach for fine-grained privacy analysis by formulating and deriving a new metric called the privacy risk score.
arXiv Detail & Related papers (2020-03-24T00:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.