Hierarchical Risk Parity and Minimum Variance Portfolio Design on NIFTY
50 Stocks
- URL: http://arxiv.org/abs/2202.02728v1
- Date: Sun, 6 Feb 2022 08:07:25 GMT
- Title: Hierarchical Risk Parity and Minimum Variance Portfolio Design on NIFTY
50 Stocks
- Authors: Jaydip Sen, Sidra Mehtab, Abhishek Dutta, Saikat Mondal
- Abstract summary: This paper proposes a systematic approach to designing portfolios using two algorithms, the critical line algorithm, and the hierarchical risk parity algorithm on eight sectors of the Indian stock market.
The backtesting results of the portfolios indicate while the performance of the CLA algorithm is superior on the training data, the HRP algorithm has outperformed the CLA algorithm on the test data.
- Score: 1.1879716317856945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Portfolio design and optimization have been always an area of research that
has attracted a lot of attention from researchers from the finance domain.
Designing an optimum portfolio is a complex task since it involves accurate
forecasting of future stock returns and risks and making a suitable tradeoff
between them. This paper proposes a systematic approach to designing portfolios
using two algorithms, the critical line algorithm, and the hierarchical risk
parity algorithm on eight sectors of the Indian stock market. While the
portfolios are designed using the stock price data from Jan 1, 2016, to Dec 31,
2020, they are tested on the data from Jan 1, 2021, to Aug 26, 2021. The
backtesting results of the portfolios indicate while the performance of the CLA
algorithm is superior on the training data, the HRP algorithm has outperformed
the CLA algorithm on the test data.
Related papers
- Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Performance Evaluation of Equal-Weight Portfolio and Optimum Risk
Portfolio on Indian Stocks [0.0]
Three approaches to portfolio design minimize the risk, optimize the risk, and assigning equal weights to stocks.
The portfolios are designed using the historical prices of the stocks from Jan 1, 2017, to Dec 31, 2022.
The performances of the portfolios are compared, and the portfolio yielding the higher return for each sector is identified.
arXiv Detail & Related papers (2023-09-24T17:06:58Z) - Portfolio Optimization: A Comparative Study [0.0]
This chapter presents a comparative study of three portfolio design approaches, the mean-variance portfolio (MVP), hierarchical risk parity (HRP)-based portfolio, and autoencoder-based portfolio.
The portfolios are designed using the stock price data from January 1, 2018, to December 31, 2021, and their performances are tested on the out-of-sample data from January 1, 2022, to December 31, 2022.
It is observed that the performance of the MVP portfolio is the best on the out-of-sample data for the risk-adjusted returns.
arXiv Detail & Related papers (2023-07-11T06:56:06Z) - A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen
Portfolio on the NIFTY 50 Stocks [1.5773159234875098]
This paper presents a systematic approach to portfolio optimization using two approaches, the hierarchical risk parity algorithm and the Eigen portfolio on seven sectors of the Indian stock market.
The backtesting results of the portfolios indicate that the performance of the HRP portfolio is superior to that of its counterpart on both training and test data for the majority of the sectors studied.
arXiv Detail & Related papers (2022-10-03T14:51:24Z) - Algorithmic Foundations of Empirical X-risk Minimization [51.58884973792057]
This manuscript introduces a new optimization framework machine learning and AI, named bf empirical X-risk baseline (EXM).
X-risk is a term introduced to represent a family of compositional measures or objectives.
arXiv Detail & Related papers (2022-06-01T12:22:56Z) - Precise Stock Price Prediction for Optimized Portfolio Design Using an
LSTM Model [1.1879716317856945]
We present optimized portfolios based on the seven sectors of the Indian economy.
The past prices of the stocks are extracted from the web from January 1, 2016, to December 31, 2020.
An LSTM regression model is also designed for predicting future stock prices.
arXiv Detail & Related papers (2022-03-02T14:37:30Z) - Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM
Model [0.0]
This paper presents an algorithmic approach for designing optimum risk and eigen portfolios for five thematic sectors of the NSE of India.
The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020.
An LSTM model is designed for predicting future stock prices.
Seven months after the portfolios were formed, on Aug 3, 2021, the actual returns of the portfolios are compared with the LSTM-predicted returns.
arXiv Detail & Related papers (2022-02-06T07:41:20Z) - Learning to Hash Robustly, with Guarantees [79.68057056103014]
In this paper, we design an NNS algorithm for the Hamming space that has worst-case guarantees essentially matching that of theoretical algorithms.
We evaluate the algorithm's ability to optimize for a given dataset both theoretically and practically.
Our algorithm has a 1.8x and 2.1x better recall on the worst-performing queries to the MNIST and ImageNet datasets.
arXiv Detail & Related papers (2021-08-11T20:21:30Z) - Provably Efficient Algorithms for Multi-Objective Competitive RL [54.22598924633369]
We study multi-objective reinforcement learning (RL) where an agent's reward is represented as a vector.
In settings where an agent competes against opponents, its performance is measured by the distance of its average return vector to a target set.
We develop statistically and computationally efficient algorithms to approach the associated target set.
arXiv Detail & Related papers (2021-02-05T14:26:00Z) - Generalization in portfolio-based algorithm selection [97.74604695303285]
We provide the first provable guarantees for portfolio-based algorithm selection.
We show that if the portfolio is large, overfitting is inevitable, even with an extremely simple algorithm selector.
arXiv Detail & Related papers (2020-12-24T16:33:17Z) - Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online
Algorithms [85.97516436641533]
We study the problem of improving the performance of online algorithms by incorporating machine-learned predictions.
The goal is to design algorithms that are both consistent and robust.
We provide the first set of non-trivial lower bounds for competitive analysis using machine-learned predictions.
arXiv Detail & Related papers (2020-10-22T04:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.