Precise Stock Price Prediction for Optimized Portfolio Design Using an
LSTM Model
- URL: http://arxiv.org/abs/2203.01326v1
- Date: Wed, 2 Mar 2022 14:37:30 GMT
- Title: Precise Stock Price Prediction for Optimized Portfolio Design Using an
LSTM Model
- Authors: Jaydip Sen, Sidra Mehtab, Abhishek Dutta, Saikat Mondal
- Abstract summary: We present optimized portfolios based on the seven sectors of the Indian economy.
The past prices of the stocks are extracted from the web from January 1, 2016, to December 31, 2020.
An LSTM regression model is also designed for predicting future stock prices.
- Score: 1.1879716317856945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of future prices of stocks is a difficult task to
perform. Even more challenging is to design an optimized portfolio of stocks
with the identification of proper weights of allocation to achieve the
optimized values of return and risk. We present optimized portfolios based on
the seven sectors of the Indian economy. The past prices of the stocks are
extracted from the web from January 1, 2016, to December 31, 2020. Optimum
portfolios are designed on the selected seven sectors. An LSTM regression model
is also designed for predicting future stock prices. Five months after the
construction of the portfolios, i.e., on June 1, 2021, the actual and predicted
returns and risks of each portfolio are computed. The predicted and the actual
returns indicate the very high accuracy of the LSTM model.
Related papers
- Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - Reinforcement Learning with Maskable Stock Representation for Portfolio
Management in Customizable Stock Pools [34.97636568457075]
Portfolio management (PM) is a fundamental financial trading task, which explores the optimal periodical reallocation of capitals into different stocks to pursue long-term profits.
ExistingReinforcement learning (RL) methods require to retrain RL agents even with a tiny change of the stock pool, which leads to high computational cost and unstable performance.
We propose EarnMore to handle PM with CSPs through one-shot training in a global stock pool.
arXiv Detail & Related papers (2023-11-17T09:16:59Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen
Portfolio on the NIFTY 50 Stocks [1.5773159234875098]
This paper presents a systematic approach to portfolio optimization using two approaches, the hierarchical risk parity algorithm and the Eigen portfolio on seven sectors of the Indian stock market.
The backtesting results of the portfolios indicate that the performance of the HRP portfolio is superior to that of its counterpart on both training and test data for the majority of the sectors studied.
arXiv Detail & Related papers (2022-10-03T14:51:24Z) - Robust Portfolio Design and Stock Price Prediction Using an Optimized
LSTM Model [0.0]
This paper presents a systematic approach towards building two types of portfolios, optimum risk, and eigen, for four critical economic sectors of India.
The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020.
An LSTM model is also designed for predicting future stock prices.
arXiv Detail & Related papers (2022-03-02T14:15:14Z) - Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM
Model [0.0]
This paper presents an algorithmic approach for designing optimum risk and eigen portfolios for five thematic sectors of the NSE of India.
The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020.
An LSTM model is designed for predicting future stock prices.
Seven months after the portfolios were formed, on Aug 3, 2021, the actual returns of the portfolios are compared with the LSTM-predicted returns.
arXiv Detail & Related papers (2022-02-06T07:41:20Z) - Analysis of Sectoral Profitability of the Indian Stock Market Using an
LSTM Regression Model [0.0]
This paper presents an optimized predictive model built on long-and-short-term memory (LSTM) architecture for automatically extracting past stock prices from the web over a specified time interval.
The model is deployed for making buy and sell transactions based on its predicted results for 70 important stocks from seven different sectors listed in the National Stock Exchange (NSE) of India.
The results indicate that the model is highly accurate in predicting future stock prices.
arXiv Detail & Related papers (2021-11-09T07:50:48Z) - Stock Portfolio Optimization Using a Deep Learning LSTM Model [1.1470070927586016]
This work has carried out an analysis of the time series of the historical prices of the top five stocks from the nine different sectors of the Indian stock market from January 1, 2016, to December 31, 2020.
Optimum portfolios are built for each of these sectors.
The predicted and the actual returns of each portfolio are found to be high, indicating the high precision of the LSTM model.
arXiv Detail & Related papers (2021-11-08T18:41:49Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Should You Take Investment Advice From WallStreetBets? A Data-Driven
Approach [37.86739837901986]
Reddit's WallStreetBets (WSB) community has come to prominence in light of its notable role in affecting the stock prices of what are now referred to as meme stocks.
This paper analyses WSB data spanning from January 2019 to April 2021 in order to assess how successful an investment strategy relying on the community's recommendations could have been.
arXiv Detail & Related papers (2021-05-06T14:47:03Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.