High-order Neighborhoods Know More: HyperGraph Learning Meets Source-free Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2405.06916v1
- Date: Sat, 11 May 2024 05:07:43 GMT
- Title: High-order Neighborhoods Know More: HyperGraph Learning Meets Source-free Unsupervised Domain Adaptation
- Authors: Jinkun Jiang, Qingxuan Lv, Yuezun Li, Yong Du, Sheng Chen, Hui Yu, Junyu Dong,
- Abstract summary: Source-free Unsupervised Domain Adaptation aims to classify target samples by only accessing a pre-trained source model and unlabelled target samples.
Existing methods normally exploit the pair-wise relation among target samples and attempt to discover their correlations by clustering these samples based on semantic features.
We propose a new SFDA method that exploits the high-order neighborhood relation and explicitly takes the domain shift effect into account.
- Score: 34.08681468394247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free Unsupervised Domain Adaptation (SFDA) aims to classify target samples by only accessing a pre-trained source model and unlabelled target samples. Since no source data is available, transferring the knowledge from the source domain to the target domain is challenging. Existing methods normally exploit the pair-wise relation among target samples and attempt to discover their correlations by clustering these samples based on semantic features. The drawback of these methods includes: 1) the pair-wise relation is limited to exposing the underlying correlations of two more samples, hindering the exploration of the structural information embedded in the target domain; 2) the clustering process only relies on the semantic feature, while overlooking the critical effect of domain shift, i.e., the distribution differences between the source and target domains. To address these issues, we propose a new SFDA method that exploits the high-order neighborhood relation and explicitly takes the domain shift effect into account. Specifically, we formulate the SFDA as a Hypergraph learning problem and construct hyperedges to explore the local group and context information among multiple samples. Moreover, we integrate a self-loop strategy into the constructed hypergraph to elegantly introduce the domain uncertainty of each sample. By clustering these samples based on hyperedges, both the semantic feature and domain shift effects are considered. We then describe an adaptive relation-based objective to tune the model with soft attention levels for all samples. Extensive experiments are conducted on Office-31, Office-Home, VisDA, and PointDA-10 datasets. The results demonstrate the superiority of our method over state-of-the-art counterparts.
Related papers
- Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
Semi-supervised domain adaptation (SSDA) adapts a learner to a new domain by effectively utilizing source domain data and a few labeled target samples.
We show that the proposed model significantly outperforms SOTA methods in terms of effectiveness and generalisability on SSDA datasets.
arXiv Detail & Related papers (2023-03-30T16:48:28Z) - Chaos to Order: A Label Propagation Perspective on Source-Free Domain
Adaptation [8.27771856472078]
We present Chaos to Order (CtO), a novel approach for source-free domain adaptation (SFDA)
CtO strives to constrain semantic credibility and propagate label information among target subpopulations.
Empirical evidence demonstrates that CtO outperforms the state of the arts on three public benchmarks.
arXiv Detail & Related papers (2023-01-20T03:39:35Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
arXiv Detail & Related papers (2022-02-06T15:45:45Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model.
We propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level.
Our method produces state-of-the-art results on the C-Driving dataset.
arXiv Detail & Related papers (2021-06-07T08:38:41Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.