Confidence Guided Depth Completion Network
- URL: http://arxiv.org/abs/2202.03257v1
- Date: Mon, 7 Feb 2022 14:57:28 GMT
- Title: Confidence Guided Depth Completion Network
- Authors: Yongjin Lee, Seokjun Park, Beomgu Kang, Hyunwook Park
- Abstract summary: The paper proposes an image-guided depth completion method to estimate accurate dense depth maps with fast computation time.
Compared with the top-ranked models on the KITTI depth completion online leaderboard, the proposed model shows much faster computation time and competitive performance.
- Score: 3.8998241153792454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper proposes an image-guided depth completion method to estimate
accurate dense depth maps with fast computation time. The proposed network has
two-stage structure. The first stage predicts a first depth map. Then, the
second stage further refines the first depth map using the confidence maps. The
second stage consists of two layers, each of which focuses on different regions
and generates a refined depth map and a confidence map. The final depth map is
obtained by combining two depth maps from the second stage using the
corresponding confidence maps. Compared with the top-ranked models on the KITTI
depth completion online leaderboard, the proposed model shows much faster
computation time and competitive performance.
Related papers
- Bilateral Propagation Network for Depth Completion [41.163328523175466]
Depth completion aims to derive a dense depth map from sparse depth measurements with a synchronized color image.
Current state-of-the-art (SOTA) methods are predominantly propagation-based, which work as an iterative refinement on the initial estimated dense depth.
We present a Bilateral Propagation Network (BP-Net), that propagates depth at the earliest stage to avoid directly convolving on sparse data.
arXiv Detail & Related papers (2024-03-17T16:48:46Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
In this paper, we advocate that replicating the traditional two stages framework with deep neural networks improves both the interpretability and the accuracy of the results.
Our network operates in two steps: 1) the local computation of the local depth maps with a deep MVS technique, and, 2) the depth maps and images' features fusion to build a single TSDF volume.
In order to improve the matching performance between images acquired from very different viewpoints, we introduce a rotation-invariant 3D convolution kernel called PosedConv.
arXiv Detail & Related papers (2021-08-19T11:33:58Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
Two-view structure-from-motion (SfM) is the cornerstone of 3D reconstruction and visual SLAM.
We propose to revisit the problem of deep two-view SfM by leveraging the well-posedness of the classic pipeline.
Our method consists of 1) an optical flow estimation network that predicts dense correspondences between two frames; 2) a normalized pose estimation module that computes relative camera poses from the 2D optical flow correspondences, and 3) a scale-invariant depth estimation network that leverages epipolar geometry to reduce the search space, refine the dense correspondences, and estimate relative depth maps.
arXiv Detail & Related papers (2021-04-01T15:31:20Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - PENet: Towards Precise and Efficient Image Guided Depth Completion [11.162415111320625]
How to fuse the color and depth modalities plays an important role in achieving good performance.
This paper proposes a two-branch backbone that consists of a color-dominant branch and a depth-dominant branch.
The proposed full model ranks 1st in the KITTI depth completion online leaderboard at the time of submission.
arXiv Detail & Related papers (2021-03-01T06:09:23Z) - FCFR-Net: Feature Fusion based Coarse-to-Fine Residual Learning for
Monocular Depth Completion [15.01291779855834]
Recent approaches mainly formulate the depth completion as a one-stage end-to-end learning task.
We propose a novel end-to-end residual learning framework, which formulates the depth completion as a two-stage learning task.
arXiv Detail & Related papers (2020-12-15T13:09:56Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
We propose a new global geometry constraint for depth completion.
By assuming depth maps often lay on low dimensional subspaces, a dense depth map can be approximated by a weighted sum of full-resolution principal depth bases.
arXiv Detail & Related papers (2020-12-02T11:57:37Z) - Attention Aware Cost Volume Pyramid Based Multi-view Stereo Network for
3D Reconstruction [12.728154351588053]
We present an efficient multi-view stereo (MVS) network for 3D reconstruction from multiview images.
We introduce a coarseto-fine depth inference strategy to achieve high resolution depth.
arXiv Detail & Related papers (2020-11-25T13:34:11Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z) - Don't Forget The Past: Recurrent Depth Estimation from Monocular Video [92.84498980104424]
We put three different types of depth estimation into a common framework.
Our method produces a time series of depth maps.
It can be applied to monocular videos only or be combined with different types of sparse depth patterns.
arXiv Detail & Related papers (2020-01-08T16:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.