Depth Completion Using a View-constrained Deep Prior
- URL: http://arxiv.org/abs/2001.07791v3
- Date: Tue, 1 Dec 2020 22:07:55 GMT
- Title: Depth Completion Using a View-constrained Deep Prior
- Authors: Pallabi Ghosh, Vibhav Vineet, Larry S. Davis, Abhinav Shrivastava,
Sudipta Sinha, Neel Joshi
- Abstract summary: Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
- Score: 73.21559000917554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has shown that the structure of convolutional neural networks
(CNNs) induces a strong prior that favors natural images. This prior, known as
a deep image prior (DIP), is an effective regularizer in inverse problems such
as image denoising and inpainting. We extend the concept of the DIP to depth
images. Given color images and noisy and incomplete target depth maps, we
optimize a randomly-initialized CNN model to reconstruct a depth map restored
by virtue of using the CNN network structure as a prior combined with a
view-constrained photo-consistency loss. This loss is computed using images
from a geometrically calibrated camera from nearby viewpoints. We apply this
deep depth prior for inpainting and refining incomplete and noisy depth maps
within both binocular and multi-view stereo pipelines. Our quantitative and
qualitative evaluation shows that our refined depth maps are more accurate and
complete, and after fusion, produces dense 3D models of higher quality.
Related papers
- Refinement of Monocular Depth Maps via Multi-View Differentiable Rendering [4.717325308876748]
We present a novel approach to generate view consistent and detailed depth maps from a number of posed images.
We leverage advances in monocular depth estimation, which generate topologically complete, but metrically inaccurate depth maps.
Our method is able to generate dense, detailed, high-quality depth maps, also in challenging indoor scenarios, and outperforms state-of-the-art depth reconstruction approaches.
arXiv Detail & Related papers (2024-10-04T18:50:28Z) - AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth computation and estimation.
This is achieved by reversing, or undo''-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame.
arXiv Detail & Related papers (2023-10-15T05:15:45Z) - Depth Estimation and Image Restoration by Deep Learning from Defocused
Images [2.6599014990168834]
Two-headed Depth Estimation and Deblurring Network (2HDED:NET) extends a conventional Depth from Defocus (DFD) networks with a deblurring branch that shares the same encoder as the depth branch.
The proposed method has been successfully tested on two benchmarks, one for indoor and the other for outdoor scenes: NYU-v2 and Make3D.
arXiv Detail & Related papers (2023-02-21T15:28:42Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
In this paper, we advocate that replicating the traditional two stages framework with deep neural networks improves both the interpretability and the accuracy of the results.
Our network operates in two steps: 1) the local computation of the local depth maps with a deep MVS technique, and, 2) the depth maps and images' features fusion to build a single TSDF volume.
In order to improve the matching performance between images acquired from very different viewpoints, we introduce a rotation-invariant 3D convolution kernel called PosedConv.
arXiv Detail & Related papers (2021-08-19T11:33:58Z) - RigNet: Repetitive Image Guided Network for Depth Completion [20.66405067066299]
Recent approaches mainly focus on image guided learning to predict dense results.
blurry image guidance and object structures in depth still impede the performance of image guided frameworks.
We explore a repetitive design in our image guided network to sufficiently and gradually recover depth values.
Our method achieves state-of-the-art result on the NYUv2 dataset and ranks 1st on the KITTI benchmark at the time of submission.
arXiv Detail & Related papers (2021-07-29T08:00:33Z) - Learning to Recover 3D Scene Shape from a Single Image [98.20106822614392]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape.
arXiv Detail & Related papers (2020-12-17T02:35:13Z) - Deep Multi-view Depth Estimation with Predicted Uncertainty [11.012201499666503]
We employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an initial depth map.
To further increase the triangulation accuracy, we introduce a depth-refinement network (DRN) that optimize the initial depth map based on the image's contextual cues.
arXiv Detail & Related papers (2020-11-19T00:22:09Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.