論文の概要: Cyber-resilience for marine navigation by information fusion and change
detection
- arxiv url: http://arxiv.org/abs/2202.03268v1
- Date: Tue, 1 Feb 2022 12:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-13 23:45:09.277266
- Title: Cyber-resilience for marine navigation by information fusion and change
detection
- Title(参考訳): 情報融合と変化検出による海洋航行のサイバーレジリエンス
- Authors: Dimitrios Dagdilelis, Mogens Blanke, Rasmus Hjorth Andersen, Roberto
Galeazzi
- Abstract要約: サイバーレジリエンスは、海洋船の自律航法ソリューションの開発において、ますます関心が高まりつつある。
本稿では,3つのエッジを持つプリズムを通した海洋航法におけるサイバーレジリエンス特性について検討する。
沿岸航法に用いるセンサ信号の診断と緩和のための2段階推定器を提案する。
- 参考スコア(独自算出の注目度): 1.7205106391379026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyber-resilience is an increasing concern in developing autonomous navigation
solutions for marine vessels. This paper scrutinizes cyber-resilience
properties of marine navigation through a prism with three edges: multiple
sensor information fusion, diagnosis of not-normal behaviours, and change
detection. It proposes a two-stage estimator for diagnosis and mitigation of
sensor signals used for coastal navigation. Developing a Likelihood Field
approach, a first stage extracts shoreline features from radar and matches them
to the electronic navigation chart. A second stage associates buoy and beacon
features from the radar with chart information. Using real data logged at sea
tests combined with simulated spoofing, the paper verifies the ability to
timely diagnose and isolate an attempt to compromise position measurements. A
new approach is suggested for high level processing of received data to
evaluate their consistency, that is agnostic to the underlying technology of
the individual sensory input. A combined parametric Gaussian modelling and
Kernel Density Estimation is suggested and compared with a generalized
likelihood ratio change detector that uses sliding windows. The paper shows how
deviations from nominal behaviour and isolation of the components is possible
when under attack or when defects in sensors occur.
- Abstract(参考訳): サイバーレジリエンスは、船舶の自律航法ソリューション開発における関心が高まっている。
本稿では,複数のセンサ情報融合,非正常動作の診断,変化検出の3つのエッジを有するプリズムによる海洋航行のサイバーレジリエンス特性について検討する。
沿岸航法に用いるセンサ信号の診断と緩和のための2段階推定器を提案する。
Likelihood Fieldアプローチの開発の第1段階では、レーダーから海岸線の特徴を抽出し、それらを電子ナビゲーションチャートにマッチさせる。
第2ステージは、ブイとビーコンをレーダーからチャート情報に関連付ける。
海上試験で記録された実データと模擬スプーフィングを組み合わせることで、タイムリーに診断し、位置測定を妥協する試みを分離する能力を検証する。
個々の感覚入力の基盤となる技術とは無関係な、受信データの高レベルな処理に対して、その一貫性を評価する新しいアプローチが提案されている。
パラメトリックガウスモデルとカーネル密度推定の組み合わせを提案し,スライディングウインドウを用いた一般化された確率比変化検出器と比較した。
本論文は, 攻撃時やセンサの欠陥発生時に, コンポーネントの特異な振る舞いや分離からの逸脱がいかに可能かを示す。
関連論文リスト
- AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
本研究は,マルチエージェント認識システムにおいて,特定のGPS信号が容易に誤認できるかどうかを考察する。
我々は,システム内の個々のエージェントに対してステルス性を持つ逆GPS信号を生成可能なtextscAdvGPSを紹介する。
OPV2Vデータセットに対する実験により、これらの攻撃が最先端の手法の性能を著しく損なうことを示した。
論文 参考訳(メタデータ) (2024-01-30T23:13:41Z) - RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object
Detection Systems [13.046347364043594]
自動運転では、LiDARとレーダーは環境認識に不可欠である。
最近の最先端の研究は、レーダーとLiDARの融合が悪天候の堅牢な検出につながることを明らかにしている。
鳥眼ビュー融合学習に基づくアンカーボックスフリー物体検出システムを提案する。
論文 参考訳(メタデータ) (2022-11-11T10:24:42Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Detecting and Identifying Optical Signal Attacks on Autonomous Driving
Systems [25.32946739108013]
攻撃対象のセンサーを検知・識別する枠組みを提案する。
具体的には、3つのセンサーからなるシステムに対する攻撃を検知する新しい手法を最初に開発する。
本研究では,実データと最先端機械学習モデルを用いて,攻撃検出手法の評価を行う。
論文 参考訳(メタデータ) (2021-10-20T12:21:04Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - GEM: Glare or Gloom, I Can Still See You -- End-to-End Multimodal Object
Detector [11.161639542268015]
厳しい照明条件下での2次元物体検出のためのセンサ対応マルチモーダル融合戦略を提案する。
本ネットワークは,各センサモダリティの測定信頼性をスカラーウェイトとマスクの形で推定する。
提案手法はFLIR-Thermalデータセット上で既存の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-24T14:56:37Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Adversarial Radar Inference: Inverse Tracking, Identifying Cognition and
Designing Smart Interference [15.04540534703128]
本稿では,認知レーダを含む3つの対向的推論問題について考察する。
まず、レーダの逆追跡について議論し、レーダの動作に基づいて敵の予測を推定し、レーダの知覚精度を校正する。
第二に、マイクロ経済学からの選好を明らかにすることによって、認知レーダが信号処理制約のある制約付きユーティリティ最大化器であるかどうかを判定するために、非パラメトリック試験を定式化する。
論文 参考訳(メタデータ) (2020-08-01T13:17:07Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
本稿では,エンド・ツー・エンドのハイブリッド型オブジェクト検出システムであるEHSODについて述べる。
完全なアノテートと弱いアノテートの両方で、ワンショットでトレーニングすることができる。
完全なアノテートされたデータの30%しか持たない複数のオブジェクト検出ベンチマークで、同等の結果が得られる。
論文 参考訳(メタデータ) (2020-02-18T08:04:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。