論文の概要: Human Activity Recognition Using Tools of Convolutional Neural Networks:
A State of the Art Review, Data Sets, Challenges and Future Prospects
- arxiv url: http://arxiv.org/abs/2202.03274v1
- Date: Wed, 2 Feb 2022 18:52:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-13 22:43:12.350197
- Title: Human Activity Recognition Using Tools of Convolutional Neural Networks:
A State of the Art Review, Data Sets, Challenges and Future Prospects
- Title(参考訳): 畳み込みニューラルネットワークを用いた人間の活動認識:アートレビュー,データセット,課題,今後の展望
- Authors: Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray, Ghulam Muhammad
- Abstract要約: このレビューでは、人間の活動認識のための畳み込みニューラルネットワーク(CNN)という、幅広いディープニューラルネットワークアーキテクチャに基づく最近の研究を要約する。
レビューされたシステムは、マルチモーダルセンシングデバイス、スマートフォン、レーダー、ビジョンデバイスなどの入力デバイスの使用によって、4つのカテゴリに分類される。
- 参考スコア(独自算出の注目度): 7.275302131211702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human Activity Recognition (HAR) plays a significant role in the everyday
life of people because of its ability to learn extensive high-level information
about human activity from wearable or stationary devices. A substantial amount
of research has been conducted on HAR and numerous approaches based on deep
learning and machine learning have been exploited by the research community to
classify human activities. The main goal of this review is to summarize recent
works based on a wide range of deep neural networks architecture, namely
convolutional neural networks (CNNs) for human activity recognition. The
reviewed systems are clustered into four categories depending on the use of
input devices like multimodal sensing devices, smartphones, radar, and vision
devices. This review describes the performances, strengths, weaknesses, and the
used hyperparameters of CNN architectures for each reviewed system with an
overview of available public data sources. In addition, a discussion with the
current challenges to CNN-based HAR systems is presented. Finally, this review
is concluded with some potential future directions that would be of great
assistance for the researchers who would like to contribute to this field.
- Abstract(参考訳): HAR(Human Activity Recognition)は、ウェアラブルや固定デバイスから人間の活動に関する高度な情報を学ぶ能力から、人々の日常生活において重要な役割を担っている。
harではかなりの量の研究が行われており、深層学習と機械学習に基づく多くのアプローチが研究コミュニティによって人間の活動の分類に利用されている。
このレビューの主な目的は、人間の活動認識のための幅広いディープニューラルネットワークアーキテクチャ、すなわち畳み込みニューラルネットワーク(CNN)に基づく最近の研究を要約することである。
レビューされたシステムは、マルチモーダルセンシングデバイス、スマートフォン、レーダー、ビジョンデバイスなどの入力デバイスの使用によって、4つのカテゴリに分類される。
本稿では,各レビューシステムの性能,強度,弱点,使用済みのCNNアーキテクチャのハイパーパラメータについて概説する。
さらに、CNNベースのHARシステムに対する現在の課題についても論じる。
最後に、このレビューは、この分野に貢献したい研究者にとって大きな助けとなるかもしれない将来的な方向性で締めくくられる。
関連論文リスト
- A Critical Analysis on Machine Learning Techniques for Video-based Human Activity Recognition of Surveillance Systems: A Review [1.3693860189056777]
混雑した場所での異常な活動の増大は、インテリジェントな監視システムの必要性を喚起する。
ビデオに基づく人間の活動認識は、そのプレス問題で多くの研究者を惹きつけている。
本稿では,映像に基づくヒューマンアクティビティ認識(HAR)技術について批判的な調査を行う。
論文 参考訳(メタデータ) (2024-09-01T14:43:57Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
ニューラルシンボリック・コンピューティング(NeSy)は、人工知能(AI)の活発な研究領域である。
NeSyは、ニューラルネットワークにおける記号表現の推論と解釈可能性の利点と堅牢な学習の整合性を示す。
論文 参考訳(メタデータ) (2022-10-28T04:38:10Z) - Classifying Human Activities with Inertial Sensors: A Machine Learning
Approach [0.0]
HAR(Human Activity Recognition)は、現在進行中の研究課題である。
医療サポート、スポーツ、フィットネス、ソーシャルネットワーキング、ヒューマン・コンピュータ・インタフェース、シニア・ケア、エンターテイメント、監視などの分野に応用されている。
スマートフォンの慣性センサデータを用いて,人間活動認識のための機械学習と深層学習のアプローチを検討した。
論文 参考訳(メタデータ) (2021-11-09T08:17:33Z) - Deep Learning in Human Activity Recognition with Wearable Sensors: A
Review on Advances [8.642789007878479]
ディープラーニングは、モバイルおよびウェアラブルデバイスにおける人間の活動認識の境界を大きく押し上げている。
本稿では,ウェアラブルをベースとしたHARのためのディープラーニング手法を導入した既存の研究を体系的に分類し,要約する。
深層学習に基づくHARのための最先端フロンティアと今後の方向性も提示する。
論文 参考訳(メタデータ) (2021-10-31T07:16:23Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - Continual Learning in Sensor-based Human Activity Recognition: an
Empirical Benchmark Analysis [4.686889458553123]
センサーベースのヒューマンアクティビティ認識(HAR)は、スマートホーム、パーソナルヘルスケア、都市計画における多くの現実世界のアプリケーションのための重要なイネーブラーです。
HARシステムは、ゼロから再設計することなく、長期間にわたって新しいアクティビティを自律的に学習できますか?
この問題は連続学習と呼ばれ、コンピュータビジョンの分野で特に人気があります。
論文 参考訳(メタデータ) (2021-04-19T15:38:22Z) - Human Activity Recognition Using Multichannel Convolutional Neural
Network [0.0]
人間の活動認識(HAR)は、単に人間の行動を知覚する機械の能力を指します。
本論文では,実用的行動から収集したデータに基づいて,人間の行動を区別できる教師付き学習法について述べる。
このモデルはUCI HARデータセットでテストされ、95.25%の分類精度が得られた。
論文 参考訳(メタデータ) (2021-01-17T16:48:17Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
論文 参考訳(メタデータ) (2020-05-17T11:22:11Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
本稿では,センサを用いた人間の活動認識のための最先端のディープラーニング手法について調査する。
まず、官能データのマルチモーダリティを導入し、公開データセットに情報を提供する。
次に、課題によって深層メソッドを構築するための新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-01-21T09:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。