Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors
to Sequences
- URL: http://arxiv.org/abs/2202.03341v1
- Date: Mon, 7 Feb 2022 16:38:36 GMT
- Title: Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors
to Sequences
- Authors: Meng Liu and Shuiwang Ji
- Abstract summary: We propose the Neighbor2Seq to transform the hierarchical neighborhood of each node into a sequence.
We evaluate our method on a massive graph with more than 111 million nodes and 1.6 billion edges.
Results show that our proposed method is scalable to massive graphs and achieves superior performance across massive and medium-scale graphs.
- Score: 55.329402218608365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern graph neural networks (GNNs) use a message passing scheme and have
achieved great success in many fields. However, this recursive design
inherently leads to excessive computation and memory requirements, making it
not applicable to massive real-world graphs. In this work, we propose the
Neighbor2Seq to transform the hierarchical neighborhood of each node into a
sequence. This novel transformation enables the subsequent mini-batch training
for general deep learning operations, such as convolution and attention, that
are designed for grid-like data and are shown to be powerful in various
domains. Therefore, our Neighbor2Seq naturally endows GNNs with the efficiency
and advantages of deep learning operations on grid-like data by precomputing
the Neighbor2Seq transformations. We evaluate our method on a massive graph,
with more than 111 million nodes and 1.6 billion edges, as well as several
medium-scale graphs. Results show that our proposed method is scalable to
massive graphs and achieves superior performance across massive and
medium-scale graphs. Our code is available at
https://github.com/divelab/Neighbor2Seq.
Related papers
- Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNs iteratively update each node's representation in an input graph by aggregating messages from the node's neighbors.
MPNNs might quickly become prohibitive for large graphs provided they are not very sparse.
We propose approximating the input graph as an intersecting community graph (ICG) -- a combination of intersecting cliques.
arXiv Detail & Related papers (2024-05-31T09:26:26Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization [23.609017952951454]
We propose SCARA, a scalable Graph Neural Network (GNN) with feature-oriented optimization for graph computation.
SCARA efficiently computes graph embedding from node features, and further selects and reuses feature results to reduce overhead.
It is efficient to process precomputation on the largest available billion-scale GNN dataset Papers100M (111M nodes, 1.6B edges) in 100 seconds.
arXiv Detail & Related papers (2022-07-19T10:32:11Z) - Representing Long-Range Context for Graph Neural Networks with Global
Attention [37.212747564546156]
We propose the use of Transformer-based self-attention to learn long-range pairwise relationships.
Our method, which we call GraphTrans, applies a permutation-invariant Transformer module after a standard GNN module.
Our results suggest that purely-learning-based approaches without graph structure may be suitable for learning high-level, long-range relationships on graphs.
arXiv Detail & Related papers (2022-01-21T18:16:21Z) - RaWaNet: Enriching Graph Neural Network Input via Random Walks on Graphs [0.0]
Graph neural networks (GNNs) have gained increasing popularity and have shown very promising results for data that are represented by graphs.
We propose a random walk data processing of the graphs based on three selected lengths. Namely, (regular) walks of length 1 and 2, and a fractional walk of length $gamma in (0,1)$, in order to capture the different local and global dynamics on the graphs.
We test our method on various molecular datasets by passing the processed node features to the network in order to perform several classification and regression tasks.
arXiv Detail & Related papers (2021-09-15T20:04:01Z) - Training Graph Neural Networks with 1000 Layers [133.84813995275988]
We study reversible connections, group convolutions, weight tying, and equilibrium models to advance the memory and parameter efficiency of GNNs.
To the best of our knowledge, RevGNN-Deep is the deepest GNN in the literature by one order of magnitude.
arXiv Detail & Related papers (2021-06-14T15:03:00Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs.
In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings.
We show that training PPRGo and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph.
arXiv Detail & Related papers (2020-07-03T09:30:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.