Representing Long-Range Context for Graph Neural Networks with Global
Attention
- URL: http://arxiv.org/abs/2201.08821v1
- Date: Fri, 21 Jan 2022 18:16:21 GMT
- Title: Representing Long-Range Context for Graph Neural Networks with Global
Attention
- Authors: Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph
E. Gonzalez, Ion Stoica
- Abstract summary: We propose the use of Transformer-based self-attention to learn long-range pairwise relationships.
Our method, which we call GraphTrans, applies a permutation-invariant Transformer module after a standard GNN module.
Our results suggest that purely-learning-based approaches without graph structure may be suitable for learning high-level, long-range relationships on graphs.
- Score: 37.212747564546156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks are powerful architectures for structured datasets.
However, current methods struggle to represent long-range dependencies. Scaling
the depth or width of GNNs is insufficient to broaden receptive fields as
larger GNNs encounter optimization instabilities such as vanishing gradients
and representation oversmoothing, while pooling-based approaches have yet to
become as universally useful as in computer vision. In this work, we propose
the use of Transformer-based self-attention to learn long-range pairwise
relationships, with a novel "readout" mechanism to obtain a global graph
embedding. Inspired by recent computer vision results that find
position-invariant attention performant in learning long-range relationships,
our method, which we call GraphTrans, applies a permutation-invariant
Transformer module after a standard GNN module. This simple architecture leads
to state-of-the-art results on several graph classification tasks,
outperforming methods that explicitly encode graph structure. Our results
suggest that purely-learning-based approaches without graph structure may be
suitable for learning high-level, long-range relationships on graphs. Code for
GraphTrans is available at https://github.com/ucbrise/graphtrans.
Related papers
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
Graph Neural Networks (GNNs) traditionally employ a message-passing mechanism that resembles diffusion over undirected graphs.
Our key insight is to assign fuzzy edge directions to the edges of a graph so that features can preferentially flow in one direction between nodes.
We propose a general framework, called Continuous Edge Direction (CoED) GNN, for learning on graphs with fuzzy edges.
arXiv Detail & Related papers (2024-10-18T01:34:35Z) - Learning Adaptive Neighborhoods for Graph Neural Networks [45.94778766867247]
Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data.
We propose a novel end-to-end differentiable graph generator which builds graph topologies.
Our module can be readily integrated into existing pipelines involving graph convolution operations.
arXiv Detail & Related papers (2023-07-18T08:37:25Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Search to Capture Long-range Dependency with Stacking GNNs for Graph
Classification [41.84399177525008]
shallow GNNs are more common due to the well-known over-smoothing problem facing deeper GNNs.
We propose a novel approach with the help of neural architecture search (NAS), which is dubbed LRGNN (Long-Range Graph Neural Networks)
arXiv Detail & Related papers (2023-02-17T03:40:17Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
We focus on Graph Neural Networks (GNNs) that have found great success in tasks such as node or edge classification and link prediction.
New approaches for processing larger networks are needed to advance graph techniques.
We study how GNNs could be parallelized using existing tools and frameworks that are known to be successful in the deep learning community.
arXiv Detail & Related papers (2020-12-20T04:20:38Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.