論文の概要: On Continuous Integration / Continuous Delivery for Automated Deployment
of Machine Learning Models using MLOps
- arxiv url: http://arxiv.org/abs/2202.03541v1
- Date: Mon, 7 Feb 2022 22:04:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 16:20:17.919129
- Title: On Continuous Integration / Continuous Delivery for Automated Deployment
of Machine Learning Models using MLOps
- Title(参考訳): mlopsを用いた機械学習モデルの自動デプロイのための継続的インテグレーション/継続的デリバリ
- Authors: Satvik Garg, Pradyumn Pundir, Geetanjali Rathee, P.K. Gupta, Somya
Garg, Saransh Ahlawat
- Abstract要約: この調査は、マシンラーニングのライフサイクルと、DevOpsとMLOpsの主な違いについて、より詳細な調査を提供する。
MLOpsアプローチでは、機械学習フレームワークのCI/CDパイプラインを実行するためのツールとアプローチについて議論する。
その後、Github Operations(GitOps)のプッシュとプルベースのデプロイメントを詳しく見ていきます。
- 参考スコア(独自算出の注目度): 1.2885809002769633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model deployment in machine learning has emerged as an intriguing field of
research in recent years. It is comparable to the procedure defined for
conventional software development. Continuous Integration and Continuous
Delivery (CI/CD) have been shown to smooth down software advancement and speed
up businesses when used in conjunction with development and operations
(DevOps). Using CI/CD pipelines in an application that includes Machine
Learning Operations (MLOps) components, on the other hand, has difficult
difficulties, and pioneers in the area solve them by using unique tools, which
is typically provided by cloud providers. This research provides a more
in-depth look at the machine learning lifecycle and the key distinctions
between DevOps and MLOps. In the MLOps approach, we discuss tools and
approaches for executing the CI/CD pipeline of machine learning frameworks.
Following that, we take a deep look into push and pull-based deployments in
Github Operations (GitOps). Open exploration issues are also identified and
added, which may guide future study.
- Abstract(参考訳): 近年,機械学習のモデル展開が研究分野として注目されている。
従来のソフトウェア開発で定義された手順に匹敵する。
継続的統合と継続的デリバリ(CI/CD)は、開発と運用(DevOps)と併用することで、ソフトウェア進歩の円滑化とビジネスのスピードアップを図っている。
一方、機械学習オペレーション(mlops)コンポーネントを含むアプリケーションでci/cdパイプラインを使用することは困難であり、この分野の先駆者は、一般的にクラウドプロバイダが提供するユニークなツールを使用することで、それらを解決する。
この調査は、マシンラーニングのライフサイクルと、DevOpsとMLOpsの主な違いについて、より詳細な調査を提供する。
MLOpsアプローチでは、機械学習フレームワークのCI/CDパイプラインを実行するためのツールとアプローチについて議論する。
その後は、Github Operations(GitOps)のプッシュとプルベースのデプロイメントを深く検討します。
オープン探索の問題も特定され、今後の研究を導く可能性がある。
関連論文リスト
- Machine Learning Operations: A Mapping Study [0.0]
この記事では、MLOpsパイプラインのいくつかのコンポーネントに存在する問題について論じる。
MLOpsシステムで発生する課題を、異なる焦点領域に分類するために、システマティックマッピング研究が実施されている。
この研究の主な価値は、MLOpsの独特な課題と、私たちの研究で概説された推奨された解決策をマッピングすることです。
論文 参考訳(メタデータ) (2024-09-28T17:17:40Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - MLOps: A Step Forward to Enterprise Machine Learning [0.0]
この研究は、MLOps、そのメリット、困難、進化、および重要な基盤技術に関する詳細なレビューを提示する。
MLOpsワークフローは、モデルとデータ探索とデプロイメントの両方に必要なさまざまなツールとともに、詳細に説明されている。
この記事では、さまざまな成熟度の高い自動パイプラインを使用して、MLプロジェクトのエンドツーエンド生産にも光を当てます。
論文 参考訳(メタデータ) (2023-05-27T20:44:14Z) - SimCS: Simulation for Domain Incremental Online Continual Segmentation [60.18777113752866]
既存の継続学習アプローチは、主にクラス増分設定における画像分類に焦点を当てている。
シミュレーションデータを用いて連続学習を規則化するパラメータフリー手法であるSimCSを提案する。
論文 参考訳(メタデータ) (2022-11-29T14:17:33Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Exploring the potential of flow-based programming for machine learning
deployment in comparison with service-oriented architectures [8.677012233188968]
理由のひとつは、データ収集と分析に関するアクティビティのために設計されていないインフラストラクチャである、と私たちは論じています。
本稿では,データストリームを用いたフローベースのプログラミングを,ソフトウェアアプリケーション構築に広く使用されるサービス指向アーキテクチャの代替として検討する。
論文 参考訳(メタデータ) (2021-08-09T15:06:02Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Modular approach to data preprocessing in ALOHA and application to a
smart industry use case [0.0]
データ前処理と変換パイプラインをサポートするために、ALOHAツールフローに統合されたモジュラーアプローチに対処する。
提案手法の有効性を示すために,キーワードスポッティングのユースケースに関する実験結果を示す。
論文 参考訳(メタデータ) (2021-02-02T06:48:51Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - A System for Real-Time Interactive Analysis of Deep Learning Training [66.06880335222529]
現在利用可能なシステムは、トレーニングプロセスが始まる前に指定しなければならないログデータのみを監視することに限定されている。
本稿では,リアルタイム情報を生成するライブプロセス上で対話型クエリを実行可能にするシステムを提案する。
論文 参考訳(メタデータ) (2020-01-05T11:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。