Addressing Data Scarcity in Multimodal User State Recognition by
Combining Semi-Supervised and Supervised Learning
- URL: http://arxiv.org/abs/2202.03775v1
- Date: Tue, 8 Feb 2022 10:41:41 GMT
- Title: Addressing Data Scarcity in Multimodal User State Recognition by
Combining Semi-Supervised and Supervised Learning
- Authors: Hendric Vo{\ss}, Heiko Wersing, Stefan Kopp
- Abstract summary: We present a multimodal machine learning approach for detecting dis-/agreement and confusion states in a human-robot interaction environment.
We achieve an average F1-score of 81.1% for dis-/agreement detection with a small amount of labeled data and a large unlabeled data set.
- Score: 1.1688030627514532
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Detecting mental states of human users is crucial for the development of
cooperative and intelligent robots, as it enables the robot to understand the
user's intentions and desires. Despite their importance, it is difficult to
obtain a large amount of high quality data for training automatic recognition
algorithms as the time and effort required to collect and label such data is
prohibitively high. In this paper we present a multimodal machine learning
approach for detecting dis-/agreement and confusion states in a human-robot
interaction environment, using just a small amount of manually annotated data.
We collect a data set by conducting a human-robot interaction study and develop
a novel preprocessing pipeline for our machine learning approach. By combining
semi-supervised and supervised architectures, we are able to achieve an average
F1-score of 81.1\% for dis-/agreement detection with a small amount of labeled
data and a large unlabeled data set, while simultaneously increasing the
robustness of the model compared to the supervised approach.
Related papers
- Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Deep Learning and Handheld Augmented Reality Based System for Optimal
Data Collection in Fault Diagnostics Domain [0.0]
This paper presents a novel human-machine interaction framework to perform fault diagnostics with minimal data.
Minimizing the required data will increase the practicability of data-driven models in diagnosing faults.
The proposed framework has provided above 100% precision and recall on a novel dataset with only one instance of each fault condition.
arXiv Detail & Related papers (2022-06-15T19:15:26Z) - Development of a robust cascaded architecture for intelligent robot
grasping using limited labelled data [0.0]
In the case of robots, we can not afford to spend that much time on making it to learn how to grasp objects effectively.
We propose an efficient learning architecture based on VQVAE so that robots can be taught with sufficient data corresponding to correct grasping.
A semi-supervised learning based model which has much more generalization capability even with limited labelled data set has been investigated.
arXiv Detail & Related papers (2021-11-06T11:01:15Z) - Understanding the World Through Action [91.3755431537592]
I will argue that a general, principled, and powerful framework for utilizing unlabeled data can be derived from reinforcement learning.
I will discuss how such a procedure is more closely aligned with potential downstream tasks.
arXiv Detail & Related papers (2021-10-24T22:33:52Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.