論文の概要: GraphDCA -- a Framework for Node Distribution Comparison in Real and
Synthetic Graphs
- arxiv url: http://arxiv.org/abs/2202.03884v1
- Date: Tue, 8 Feb 2022 14:19:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 20:09:57.314717
- Title: GraphDCA -- a Framework for Node Distribution Comparison in Real and
Synthetic Graphs
- Title(参考訳): graphdca -- 実グラフと合成グラフのノード分布比較のためのフレームワーク
- Authors: Ciwan Ceylan, Petra Poklukar, Hanna Hultin, Alexander Kravchenko,
Anastasia Varava, Danica Kragic
- Abstract要約: 2つのグラフを比較するとき、ノード構造的特徴の分布は、グローバルグラフ統計よりも有益である、と我々は主張する。
本稿では,各ノード表現セットのアライメントに基づいてグラフ間の類似性を評価するフレームワークGraphDCAを提案する。
- 参考スコア(独自算出の注目度): 72.51835626235368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We argue that when comparing two graphs, the distribution of node structural
features is more informative than global graph statistics which are often used
in practice, especially to evaluate graph generative models. Thus, we present
GraphDCA - a framework for evaluating similarity between graphs based on the
alignment of their respective node representation sets. The sets are compared
using a recently proposed method for comparing representation spaces, called
Delaunay Component Analysis (DCA), which we extend to graph data. To evaluate
our framework, we generate a benchmark dataset of graphs exhibiting different
structural patterns and show, using three node structure feature extractors,
that GraphDCA recognizes graphs with both similar and dissimilar local
structure. We then apply our framework to evaluate three publicly available
real-world graph datasets and demonstrate, using gradual edge perturbations,
that GraphDCA satisfyingly captures gradually decreasing similarity, unlike
global statistics. Finally, we use GraphDCA to evaluate two state-of-the-art
graph generative models, NetGAN and CELL, and conclude that further
improvements are needed for these models to adequately reproduce local
structural features.
- Abstract(参考訳): 2つのグラフを比較するとき、特にグラフ生成モデルを評価するためによく用いられるグローバルグラフ統計よりも、ノード構造の特徴の分布の方がより有益であると論じる。
そこで我々は,各ノード表現セットのアライメントに基づいて,グラフ間の類似性を評価するフレームワークGraphDCAを提案する。
これらの集合は、グラフデータに拡張したDCA(Delaunay Component Analysis)と呼ばれる、最近提案された表現空間の比較手法を用いて比較される。
本フレームワークを評価するために, 異なる構造パターンを示すグラフのベンチマークデータセットを作成し, 3つのノード構造特徴抽出器を用いて, 類似および異種局所構造を持つグラフを認識することを示す。
次に,3つの実世界のグラフデータセットを評価するためのフレームワークを適用し,段階的なエッジ摂動を用いて,グラフdcaがグローバル統計とは異なり徐々に類似度を減少させていくことを実証する。
最後に、グラフDCAを用いて2つの最先端グラフ生成モデル、NetGANとCellを評価し、これらのモデルが局所的な特徴を適切に再現するためにさらなる改善が必要であると結論づける。
関連論文リスト
- GDM: Dual Mixup for Graph Classification with Limited Supervision [27.8982897698616]
グラフニューラルネットワーク(GNN)は、グラフ分類タスクにおいて優れたパフォーマンスを得るために、多数のラベル付きグラフサンプルを必要とする。
ラベル付きグラフサンプルの減少に伴い, GNNの性能は著しく低下する。
本稿では,新しいラベル付きグラフサンプルを生成するための混合グラフ拡張法を提案する。
論文 参考訳(メタデータ) (2023-09-18T20:17:10Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Generating the Graph Gestalt: Kernel-Regularized Graph Representation
Learning [47.506013386710954]
グラフデータの完全な科学的理解は、グローバル構造とローカル構造の両方に対処する必要がある。
本稿では,グラフVAEフレームワークにおける相補的目的として,両者のジョイントモデルを提案する。
実験により,生成したグラフ構造の現実性は,典型的には1-2桁のグラフ構造メトリクスによって著しく向上したことが示された。
論文 参考訳(メタデータ) (2021-06-29T10:48:28Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Graph Partitioning and Graph Neural Network based Hierarchical Graph
Matching for Graph Similarity Computation [5.710312846460821]
グラフ類似性は、下流アプリケーションを容易にするために、1組のグラフ間の類似度スコアを予測することを目的としている。
この問題を効果的に解決するために,PSimGNNと呼ばれるグラフ分割とグラフニューラルネットワークに基づくモデルを提案する。
PSimGNNはグラフ類似度メトリックとして近似グラフ編集距離(GED)を用いてグラフ類似度計算タスクにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-05-16T15:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。