Time Series Anomaly Detection by Cumulative Radon Features
- URL: http://arxiv.org/abs/2202.04067v1
- Date: Tue, 8 Feb 2022 18:58:53 GMT
- Title: Time Series Anomaly Detection by Cumulative Radon Features
- Authors: Yedid Hoshen
- Abstract summary: In this work, we argue that shallow features suffice when combined with distribution distance measures.
Our approach models each time series as a high dimensional empirical distribution of features, where each time-point constitutes a single sample.
We show that by parameterizing each time series using cumulative Radon features, we are able to efficiently and effectively model the distribution of normal time series.
- Score: 32.36217153362305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting anomalous time series is key for scientific, medical and industrial
tasks, but is challenging due to its inherent unsupervised nature. In recent
years, progress has been made on this task by learning increasingly more
complex features, often using deep neural networks. In this work, we argue that
shallow features suffice when combined with distribution distance measures. Our
approach models each time series as a high dimensional empirical distribution
of features, where each time-point constitutes a single sample. Modeling the
distance between a test time series and the normal training set therefore
requires efficiently measuring the distance between multivariate probability
distributions. We show that by parameterizing each time series using cumulative
Radon features, we are able to efficiently and effectively model the
distribution of normal time series. Our theoretically grounded but
simple-to-implement approach is evaluated on multiple datasets and shown to
achieve better results than established, classical methods as well as complex,
state-of-the-art deep learning methods. Code is provided.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Time-Series Anomaly Detection with Implicit Neural Representation [0.38073142980733]
Implicit Neural Representation-based Anomaly Detection (INRAD) is proposed.
We train a simple multi-layer perceptron that takes time as input and outputs corresponding values at that time.
Then we utilize the representation error as an anomaly score for detecting anomalies.
arXiv Detail & Related papers (2022-01-28T06:17:24Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Adjusting for Autocorrelated Errors in Neural Networks for Time Series
Regression and Forecasting [10.659189276058948]
We learn the autocorrelation coefficient jointly with the model parameters in order to adjust for autocorrelated errors.
For time series regression, large-scale experiments indicate that our method outperforms the Prais-Winsten method.
Results across a wide range of real-world datasets show that our method enhances performance in almost all cases.
arXiv Detail & Related papers (2021-01-28T04:25:51Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
Time series forecasting is fundamental to scientific and engineering problems.
Deep learning methods are well suited for this problem.
We show that it improves over the state-of-the-art for standard metrics on many real-world data sets.
arXiv Detail & Related papers (2020-02-14T16:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.