論文の概要: Using a Language Model in a Kiosk Recommender System at Fast-Food
Restaurants
- arxiv url: http://arxiv.org/abs/2202.04145v1
- Date: Tue, 8 Feb 2022 21:09:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 15:36:24.979621
- Title: Using a Language Model in a Kiosk Recommender System at Fast-Food
Restaurants
- Title(参考訳): ファーストフードレストランにおけるKiosk Recommenderシステムにおける言語モデルの利用
- Authors: Eduard Zubchuk, Dmitry Menshikov, and Nikolay Mikhaylovskiy
- Abstract要約: 本稿では,ベクタライザとしての言語モデルとニューラルネットワークに基づく分類器を組み合わせた,キオスクショッピングカート推薦システムを提案する。
モデルはオフラインテストで他のモデルよりも優れたパフォーマンスを示し、A/B/Cテストで最高のモデルに匹敵するパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Kiosks are a popular self-service option in many fast-food restaurants, they
save time for the visitors and save labor for the fast-food chains. In this
paper, we propose an effective design of a kiosk shopping cart recommender
system that combines a language model as a vectorizer and a neural
network-based classifier. The model performs better than other models in
offline tests and exhibits performance comparable to the best models in A/B/C
tests.
- Abstract(参考訳): キオスクは多くのファーストフードレストランで人気のあるセルフサービスオプションであり、訪問者の時間を節約し、ファーストフードチェーンの労力を節約する。
本稿では,ベクタライザとしての言語モデルとニューラルネットワークに基づく分類器を組み合わせた,キオスクショッピングカート推薦システムを提案する。
モデルはオフラインテストで他のモデルよりも優れたパフォーマンスを示し、A/B/Cテストで最高のモデルに匹敵するパフォーマンスを示す。
関連論文リスト
- CANTONMT: Investigating Back-Translation and Model-Switch Mechanisms for Cantonese-English Neural Machine Translation [9.244878233604819]
本稿では、カントン語から英語への機械翻訳モデルの開発と評価について述べる。
オンラインで利用可能なさまざまなコーパスと事前処理とクリーニングを組み合わせることで、新しい並列コーパスが作成されている。
合成並列コーパス生成を支援するために、Webスクレイピングを通じてモノリンガルなカントンデータセットが作成されている。
論文 参考訳(メタデータ) (2024-05-13T20:37:04Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
多言語自己回帰モデルにおけるパラメータ効率細調整(PEFT)と言語間タスクの相互作用について検討する。
高速チューニングは、微調整よりも低リソース言語の性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T00:43:33Z) - Improving Massively Multilingual ASR With Auxiliary CTC Objectives [40.10307386370194]
FLEURSは102言語によるオープンASRベンチマークである。
我々は,最近のコネクショニスト時間分類(CTC)研究から着想を得た手法を考察し,モデルが多数の言語を扱えるようにした。
コンバータアーキテクチャを用いた自己教師型モデルを用いた最先端システムでは,相対28.4%CERによるFLEURSの先行研究よりも改善されている。
論文 参考訳(メタデータ) (2023-02-24T18:59:51Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - KGI: An Integrated Framework for Knowledge Intensive Language Tasks [16.511913995069097]
本稿では,他の知識集約型言語タスクに対して,この手法の強化版に基づくシステムを提案する。
我々のシステムは、KILTのリーダーボードで最高のモデルに匹敵する結果を得る。
論文 参考訳(メタデータ) (2022-04-08T10:36:21Z) - Probing Structured Pruning on Multilingual Pre-trained Models: Settings,
Algorithms, and Efficiency [62.0887259003594]
本研究では,多言語事前学習言語モデルにおける構造化プルーニングの3つの側面について検討する。
9つの下流タスクの実験は、いくつかの反直観的な現象を示している。
モデルを一度トレーニングし、推論時に異なるモデルサイズに適応できるシンプルなアプローチであるDynamic Sparsificationを紹介します。
論文 参考訳(メタデータ) (2022-04-06T06:29:52Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
我々は,MoEモデルを数兆のパラメータに効率的にスケールできるシステムを開発した。
また,MoEサンプルの効率を向上させるための新たなトレーニング手法を提案し,時間効率を向上させるために専門家の刈り取り戦略を活用する。
50言語で100億のパラメータで訓練されたモデルは、機械翻訳(MT)および多言語自然言語生成タスクにおける最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-09-22T00:57:46Z) - Knowledge Distillation for Quality Estimation [79.51452598302934]
QE(Quality Estimation)は、参照翻訳のない機械翻訳の品質を自動的に予測するタスクである。
QEの最近の成功は、非常に大きなモデルが印象的な結果をもたらす多言語事前学習表現の使用に起因している。
提案手法は, データ拡張と組み合わせて, 8倍のパラメータを持つ蒸留前学習表現と競合する軽量QEモデルをもたらすことを示す。
論文 参考訳(メタデータ) (2021-07-01T12:36:21Z) - Paraphrastic Representations at Scale [134.41025103489224]
私たちは、英語、アラビア語、ドイツ語、フランス語、スペイン語、ロシア語、トルコ語、中国語の訓練されたモデルをリリースします。
我々はこれらのモデルを大量のデータでトレーニングし、元の論文から大幅に性能を向上した。
論文 参考訳(メタデータ) (2021-04-30T16:55:28Z) - Optimal Size-Performance Tradeoffs: Weighing PoS Tagger Models [5.092028049119383]
機械学習ベースのNLPパフォーマンスの改善は、より大きなモデルとより複雑なコードでしばしば紹介される。
より優れたスコアは、より大きなツールのコストで得られ、より大きなモデルは、トレーニングと推論時間の間により多くのものを必要とします。
本稿では,モデルのサイズを計測し,これをモデルの性能と比較する手法を提案する。
論文 参考訳(メタデータ) (2021-04-16T08:02:56Z) - Self-supervised Learning for Large-scale Item Recommendations [18.19202958502061]
大規模なレコメンデータモデルは、巨大なカタログから最も関連性の高いアイテムを見つけ出す。
コーパスには何百万から数十億ものアイテムがあり、ユーザーはごく少数のユーザーに対してフィードバックを提供する傾向にある。
大規模項目推薦のためのマルチタスク自己教師型学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-25T06:21:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。