論文の概要: Optimal Hyperparameters and Structure Setting of Multi-Objective Robust
CNN Systems via Generalized Taguchi Method and Objective Vector Norm
- arxiv url: http://arxiv.org/abs/2202.04567v1
- Date: Wed, 9 Feb 2022 17:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 16:55:39.916413
- Title: Optimal Hyperparameters and Structure Setting of Multi-Objective Robust
CNN Systems via Generalized Taguchi Method and Objective Vector Norm
- Title(参考訳): 一般化田口法と対象ベクトルノルムによる多目的ロバストCNNシステムの最適過パラメータと構造設定
- Authors: Sheng-Guo Wang and Shanshan Jiang (The University of North Carolina at
Charlotte)
- Abstract要約: 機械学習、人工知能、畳み込みニューラルネットワーク(CNN)は幅広いアプリケーションで大きく進歩している。
これらのシステムには、多目的MLとAIパフォーマンスのニーズがある。
マルチオブジェクト・ロバストなCNNシステムの最適パラメータと構造を見つけるには重要な要件がある。
- 参考スコア(独自算出の注目度): 0.587414205988452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Machine Learning (ML), Artificial Intelligence (AI), and
Convolutional Neural Network (CNN) have made huge progress with broad
applications, where their systems have deep learning structures and a large
number of hyperparameters that determine the quality and performance of the
CNNs and AI systems. These systems may have multi-objective ML and AI
performance needs. There is a key requirement to find the optimal
hyperparameters and structures for multi-objective robust optimal CNN systems.
This paper proposes a generalized Taguchi approach to effectively determine the
optimal hyperparameters and structure for the multi-objective robust optimal
CNN systems via their objective performance vector norm. The proposed approach
and methods are applied to a CNN classification system with the original ResNet
for CIFAR-10 dataset as a demonstration and validation, which shows the
proposed methods are highly effective to achieve an optimal accuracy rate of
the original ResNet on CIFAR-10.
- Abstract(参考訳): 近年、機械学習(ml)、人工知能(ai)、畳み込みニューラルネットワーク(cnn)は、深層学習構造とcnnとaiシステムの品質と性能を決定する多数のハイパーパラメータを持つ幅広いアプリケーションで大きな進歩を遂げている。
これらのシステムには、多目的MLとAIパフォーマンスのニーズがある。
多目的ロバストな最適cnnシステムのための最適なハイパーパラメータと構造を見つけるための重要な要件がある。
本稿では,多目的頑健なCNNシステムの最適パラメータと構造を目的性能ベクトルノルムを用いて効果的に決定する汎用田口手法を提案する。
提案手法は,CIFAR-10データセットに対する元のResNetを用いたCNN分類システムに適用され,提案手法はCIFAR-10における元のResNetの最適精度を達成するのに極めて有効であることを示す。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - Towards Hyperparameter-Agnostic DNN Training via Dynamical System
Insights [4.513581513983453]
本稿では,ディープニューラルネットワーク(DNN),ECCO-DNNに特化した一階最適化手法を提案する。
本手法は, 最適変数軌道を動的システムとしてモデル化し, 軌道形状に基づいてステップサイズを適応的に選択する離散化アルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-10-21T03:45:13Z) - Bayesian Hyperparameter Optimization for Deep Neural Network-Based
Network Intrusion Detection [2.304713283039168]
侵入検出問題に対してディープニューラルネットワーク(DNN)がうまく適用されている。
本稿では,ハイパーパラメータの自動最適化のための新しいベイズ最適化フレームワークを提案する。
提案手法は,ランダムな探索最適化手法よりも侵入検出性能が高いことを示す。
論文 参考訳(メタデータ) (2022-07-07T20:08:38Z) - Towards Enabling Dynamic Convolution Neural Network Inference for Edge
Intelligence [0.0]
エッジインテリジェンスの最近の進歩は、スループットを高め、レイテンシを低減するために、エッジネットワーク上のCNN推論を必要とする。
柔軟性を得るためには、さまざまなモバイルデバイスに対する動的パラメータ割り当ては、事前に定義されたか、オンザフライで定義されたCNNアーキテクチャを実装する必要がある。
本稿では,スケーラブルで動的に分散したCNN推論を高速に設計するためのライブラリベースのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-18T22:33:42Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Convolution Neural Network Hyperparameter Optimization Using Simplified
Swarm Optimization [2.322689362836168]
畳み込みニューラルネットワーク(CNN)はコンピュータビジョンで広く使われている。
パフォーマンスが向上したネットワークアーキテクチャを見つけるのは容易ではない。
論文 参考訳(メタデータ) (2021-03-06T00:23:27Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
CNNのアーキテクチャと性能の関係について検討する。
本稿では,2つのコンピュータビジョンに基づく物理問題において,その特性がネットワークの性能を予測できることを示す。
我々は機械学習モデルを用いて、トレーニング前にネットワークが一定のしきい値精度よりも優れた性能を発揮できるかどうかを予測する。
論文 参考訳(メタデータ) (2020-01-07T16:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。