論文の概要: Deep Learning for Computational Cytology: A Survey
- arxiv url: http://arxiv.org/abs/2202.05126v1
- Date: Thu, 10 Feb 2022 16:22:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-11 15:14:23.672686
- Title: Deep Learning for Computational Cytology: A Survey
- Title(参考訳): 計算細胞学のための深層学習 : サーベイ
- Authors: Hao Jiang, Yanning Zhou, Yi Lin, Ronald CK Chan, Jiang Liu, Hao Chen
- Abstract要約: 完全教師付き,弱教師付き,教師なし,伝達学習など,さまざまなディープラーニング手法を導入する。
そこで我々は,公開データセット,評価指標,分類,検出,セグメンテーション,その他の関連タスクを含む多種多様な細胞画像解析アプリケーションを体系的に要約した。
- 参考スコア(独自算出の注目度): 12.08083533402352
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computational cytology is a critical, rapid-developing, yet challenging topic
in the field of medical image computing which analyzes the digitized cytology
image by computer-aided technologies for cancer screening. Recently, an
increasing number of deep learning (DL) algorithms have made significant
progress in medical image analysis, leading to the boosting publications of
cytological studies. To investigate the advanced methods and comprehensive
applications, we survey more than 120 publications of DL-based cytology image
analysis in this article. We first introduce various deep learning methods,
including fully supervised, weakly supervised, unsupervised, and transfer
learning. Then, we systematically summarize the public datasets, evaluation
metrics, versatile cytology image analysis applications including
classification, detection, segmentation, and other related tasks. Finally, we
discuss current challenges and potential research directions of computational
cytology.
- Abstract(参考訳): 計算細胞学は、がん検診のためのコンピュータ支援技術により、デジタル化された細胞診画像を解析する医療画像コンピューティングの分野において、批判的で、急速に発展するが、難しいトピックである。
近年, 深層学習(DL)アルゴリズムは医療画像解析において大きな進歩を遂げており, 細胞学的研究の出版が活発化している。
本論文では, DLに基づく細胞診画像解析の高度化と包括的応用を検討するため, 120件以上の出版物について調査する。
まず,教師付き,弱教師付き,教師なし,伝達学習など,さまざまな深層学習手法を紹介する。
次に,公開データセット,評価指標,多彩なサイトロジー画像解析アプリケーション,分類,検出,セグメンテーション,その他の関連するタスクを体系的に要約する。
最後に,計算細胞学の現在の課題と今後の研究方向性について論じる。
関連論文リスト
- Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
人工知能のサブセットであるディープラーニングの最近の進歩は、医療画像の分析に大きな革命をもたらした。
CNNは多次元医用画像から自律的に学習する能力に顕著な能力を示した。
これらのモデルは、病理学、放射線学、眼科、心臓学など、様々な医学分野に利用されてきた。
論文 参考訳(メタデータ) (2024-10-18T02:57:14Z) - Biomedical Image Segmentation: A Systematic Literature Review of Deep Learning Based Object Detection Methods [1.0043008463279772]
深層学習に基づく物体検出法は、バイオメディカルイメージセグメンテーションに一般的に用いられている。
既存の調査では、標準化されたアプローチやより広範なセグメンテーション技術に重点を置いていないことが多い。
これらの手法を批判的に分析し,課題を特定し,今後の方向性について考察した。
このSLRは、研究コミュニティにこれらのセグメンテーションモデルについて素早く深く理解することを目的としています。
論文 参考訳(メタデータ) (2024-08-06T18:38:55Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Exploring the Role of Convolutional Neural Networks (CNN) in Dental
Radiography Segmentation: A Comprehensive Systematic Literature Review [1.342834401139078]
この研究は、画像解析にCNN(Convolutional Neural Networks)を用いることで、歯科疾患の検出に有効なツールであることを示す。
CNNは歯のセグメンテーションと分類に利用し、全体として最高のパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-01-17T13:00:57Z) - A Systematic Review of Few-Shot Learning in Medical Imaging [1.049712834719005]
少ないショットの学習技術は、データの不足を減らし、医療画像分析を強化する。
この体系的なレビューは、医療画像における数ショット学習の概要を包括的に示すものである。
論文 参考訳(メタデータ) (2023-09-20T16:10:53Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
我々は最近200以上の論文をレビュー・要約し、様々な医用画像解析タスクにおける深層学習手法の適用の概要を概観した。
特に,医用画像における最先端の非教師あり半教師あり深層学習の進歩と貢献を強調した。
論文 参考訳(メタデータ) (2021-05-27T18:05:12Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
病理組織像 (HIs) は癌診断における腫瘍の種類を評価するための金の基準である。
このような分析を高速化する方法の1つは、コンピュータ支援診断(CAD)システムを使用することである。
論文 参考訳(メタデータ) (2021-02-07T19:12:32Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。