Group-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2202.05135v5
- Date: Sat, 30 Sep 2023 20:32:37 GMT
- Title: Group-Agent Reinforcement Learning
- Authors: Kaiyue Wu, Xiao-Jun Zeng
- Abstract summary: It can largely benefit the reinforcement learning process of each agent if multiple geographically distributed agents perform their separate RL tasks cooperatively.
We propose a distributed RL framework called DDAL (Decentralised Distributed Asynchronous Learning) designed for group-agent reinforcement learning (GARL)
- Score: 12.915860504511523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It can largely benefit the reinforcement learning (RL) process of each agent
if multiple geographically distributed agents perform their separate RL tasks
cooperatively. Different from multi-agent reinforcement learning (MARL) where
multiple agents are in a common environment and should learn to cooperate or
compete with each other, in this case each agent has its separate environment
and only communicates with others to share knowledge without any cooperative or
competitive behaviour as a learning outcome. In fact, this scenario exists
widely in real life whose concept can be utilised in many applications, but is
not well understood yet and not well formulated. As the first effort, we
propose group-agent system for RL as a formulation of this scenario and the
third type of RL system with respect to single-agent and multi-agent systems.
We then propose a distributed RL framework called DDAL (Decentralised
Distributed Asynchronous Learning) designed for group-agent reinforcement
learning (GARL). We show through experiments that DDAL achieved desirable
performance with very stable training and has good scalability.
Related papers
- On the Linear Speedup of Personalized Federated Reinforcement Learning with Shared Representations [15.549340968605234]
Federated reinforcement learning (FedRL) enables multiple agents to collaboratively learn a policy without sharing their local trajectories collected during agent-environment interactions.
We introduce a emphpersonalized FedRL framework (PFedRL) by taking advantage of possibly shared common structure among agents in heterogeneous environments.
arXiv Detail & Related papers (2024-11-22T15:42:43Z) - Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments [3.0284592792243794]
Bottom Up Network (BUN) treats the collective of multi-agents as a unified entity.
Our empirical evaluations across a variety of cooperative multi-agent scenarios, including tasks such as cooperative navigation and traffic control, consistently demonstrate BUN's superiority over baseline methods with substantially reduced computational costs.
arXiv Detail & Related papers (2024-10-03T14:25:02Z) - Selectively Sharing Experiences Improves Multi-Agent Reinforcement Learning [9.25057318925143]
We present a novel multi-agent RL approach, in which agents share with other agents a limited number of transitions they observe during training.
We show that our approach outperforms baseline no-sharing decentralized training and state-of-the art multi-agent RL algorithms.
arXiv Detail & Related papers (2023-11-01T21:35:32Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
We propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL.
To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy.
We show that LDSA learns reasonable and effective subtask assignment for better collaboration.
arXiv Detail & Related papers (2022-05-05T10:46:16Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks via
Multi-Agent Multi-Task Reinforcement Learning [22.890835786710316]
This paper investigates the problem of age of information (AoI) aware radio resource management for a platooning system.
Multiple autonomous platoons exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the cooperative awareness messages (CAMs) to their followers.
We exploit a distributed resource allocation framework based on multi-agent reinforcement learning (MARL), where each platoon leader (PL) acts as an agent and interacts with the environment to learn its optimal policy.
arXiv Detail & Related papers (2021-05-10T08:39:56Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Distributed Reinforcement Learning for Cooperative Multi-Robot Object
Manipulation [53.262360083572005]
We consider solving a cooperative multi-robot object manipulation task using reinforcement learning (RL)
We propose two distributed multi-agent RL approaches: distributed approximate RL (DA-RL) and game-theoretic RL (GT-RL)
Although we focus on a small system of two agents in this paper, both DA-RL and GT-RL apply to general multi-agent systems, and are expected to scale well to large systems.
arXiv Detail & Related papers (2020-03-21T00:43:54Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems.
We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works.
arXiv Detail & Related papers (2020-02-24T20:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.