LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning
- URL: http://arxiv.org/abs/2205.02561v1
- Date: Thu, 5 May 2022 10:46:16 GMT
- Title: LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning
- Authors: Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou, Houqiang Li
- Abstract summary: We propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL.
To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy.
We show that LDSA learns reasonable and effective subtask assignment for better collaboration.
- Score: 122.47938710284784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative multi-agent reinforcement learning (MARL) has made prominent
progress in recent years. For training efficiency and scalability, most of the
MARL algorithms make all agents share the same policy or value network.
However, many complex multi-agent tasks require agents with a variety of
specific abilities to handle different subtasks. Sharing parameters
indiscriminately may lead to similar behaviors across all agents, which will
limit the exploration efficiency and be detrimental to the final performance.
To balance the training complexity and the diversity of agents' behaviors, we
propose a novel framework for learning dynamic subtask assignment (LDSA) in
cooperative MARL. Specifically, we first introduce a subtask encoder that
constructs a vector representation for each subtask according to its identity.
To reasonably assign agents to different subtasks, we propose an ability-based
subtask selection strategy, which can dynamically group agents with similar
abilities into the same subtask. Then, we condition the subtask policy on its
representation and agents dealing with the same subtask share their experiences
to train the subtask policy. We further introduce two regularizers to increase
the representation difference between subtasks and avoid agents changing
subtasks frequently to stabilize training, respectively. Empirical results show
that LDSA learns reasonable and effective subtask assignment for better
collaboration and significantly improves the learning performance on the
challenging StarCraft II micromanagement benchmark.
Related papers
- Guiding Multi-agent Multi-task Reinforcement Learning by a Hierarchical Framework with Logical Reward Shaping [16.5526277899717]
This study aims to design a multi-agent cooperative algorithm with logic reward shaping.
Experiments have been conducted on various types of tasks in the Minecraft-like environment.
arXiv Detail & Related papers (2024-11-02T09:03:23Z) - Variational Offline Multi-agent Skill Discovery [43.869625428099425]
We propose two novel auto-encoder schemes to simultaneously capture subgroup- and temporal-level abstractions and form multi-agent skills.
Our method can be applied to offline multi-task data, and the discovered subgroup skills can be transferred across relevant tasks without retraining.
arXiv Detail & Related papers (2024-05-26T00:24:46Z) - Provable Benefits of Multi-task RL under Non-Markovian Decision Making
Processes [56.714690083118406]
In multi-task reinforcement learning (RL) under Markov decision processes (MDPs), the presence of shared latent structures has been shown to yield significant benefits to the sample efficiency compared to single-task RL.
We investigate whether such a benefit can extend to more general sequential decision making problems, such as partially observable MDPs (POMDPs) and more general predictive state representations (PSRs)
We propose a provably efficient algorithm UMT-PSR for finding near-optimal policies for all PSRs, and demonstrate that the advantage of multi-task learning manifests if the joint model class of PSR
arXiv Detail & Related papers (2023-10-20T14:50:28Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Robust Subtask Learning for Compositional Generalization [20.54144051436337]
We focus on the problem of training subtask policies in a way that they can be used to perform any task.
We aim to maximize the worst-case performance over all tasks as opposed to the average-case performance.
arXiv Detail & Related papers (2023-02-06T18:19:25Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
We quantify the agent's behavior difference and build its relationship with the policy performance via bf Role Diversity
We find that the error bound in MARL can be decomposed into three parts that have a strong relation to the role diversity.
The decomposed factors can significantly impact policy optimization on three popular directions.
arXiv Detail & Related papers (2022-06-01T04:58:52Z) - ALMA: Hierarchical Learning for Composite Multi-Agent Tasks [21.556661319375255]
We introduce ALMA, a general learning method for taking advantage of structured tasks.
ALMA simultaneously learns a high-level subtask allocation policy and low-level agent policies.
We demonstrate that ALMA learns sophisticated coordination behavior in a number of challenging environments.
arXiv Detail & Related papers (2022-05-27T19:12:23Z) - Modular Adaptive Policy Selection for Multi-Task Imitation Learning
through Task Division [60.232542918414985]
Multi-task learning often suffers from negative transfer, sharing information that should be task-specific.
This is done by using proto-policies as modules to divide the tasks into simple sub-behaviours that can be shared.
We also demonstrate its ability to autonomously divide the tasks into both shared and task-specific sub-behaviours.
arXiv Detail & Related papers (2022-03-28T15:53:17Z) - Celebrating Diversity in Shared Multi-Agent Reinforcement Learning [20.901606233349177]
Deep multi-agent reinforcement learning has shown the promise to solve complex cooperative tasks.
In this paper, we aim to introduce diversity in both optimization and representation of shared multi-agent reinforcement learning.
Our method achieves state-of-the-art performance on Google Research Football and super hard StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-06-04T00:55:03Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.