論文の概要: SUMO: Advanced sleep spindle identification with neural networks
- arxiv url: http://arxiv.org/abs/2202.05158v1
- Date: Sun, 6 Feb 2022 11:35:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-11 16:58:09.835302
- Title: SUMO: Advanced sleep spindle identification with neural networks
- Title(参考訳): SUMO:ニューラルネットワークを用いた睡眠時スピンドル同定
- Authors: Lars Kaulen, Justus T. C. Schwabedal, Jules Schneider, Philipp Ritter,
Stephan Bialonski
- Abstract要約: 睡眠時スピンドルを自動的に検出するU-Net型ディープニューラルネットワークモデルを提案する。
我々のモデルの性能は、最先端の検出器とMODAデータセットのほとんどの専門家を上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sleep spindles are neurophysiological phenomena that appear to be linked to
memory formation and other functions of the central nervous system, and that
can be observed in electroencephalographic recordings (EEG) during sleep.
Manually identified spindle annotations in EEG recordings suffer from
substantial intra- and inter-rater variability, even if raters have been highly
trained, which reduces the reliability of spindle measures as a research and
diagnostic tool. The Massive Online Data Annotation (MODA) project has recently
addressed this problem by forming a consensus from multiple such rating
experts, thus providing a corpus of spindle annotations of enhanced quality.
Based on this dataset, we present a U-Net-type deep neural network model to
automatically detect sleep spindles. Our model's performance exceeds that of
the state-of-the-art detector and of most experts in the MODA dataset. We
observed improved detection accuracy in subjects of all ages, including older
individuals whose spindles are particularly challenging to detect reliably. Our
results underline the potential of automated methods to do repetitive
cumbersome tasks with super-human performance.
- Abstract(参考訳): 睡眠スピンドル(Sleep spindles)は、記憶形成やその他の中枢神経系の機能と関連しているように見える神経生理学的現象であり、睡眠中の脳波記録(EEG)で観察できる。
脳波記録中のスピンドルアノテーションを手動で識別することは、たとえリサーが高度に訓練されたとしても、実質的なイントラとレート間変動に苦しむため、研究および診断ツールとしてのスピンドル測定の信頼性が低下する。
Massive Online Data Annotation (MODA)プロジェクトは、最近この問題に対処し、複数の評価専門家から合意を得て、品質が向上したスピンドルアノテーションのコーパスを提供する。
このデータセットに基づいて,睡眠スピンドルを自動的に検出するu-net型ディープニューラルネットワークモデルを提案する。
我々のモデルの性能は最先端の検出器とMODAデータセットのほとんどの専門家を上回る。
高齢者を含む全年齢被験者における検出精度の向上が観察され,特にスピンドル検出が困難であった。
超人的性能で繰り返し作業を行う自動化手法の可能性について検討した。
関連論文リスト
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Artificial Neural Networks-based Real-time Classification of ENG Signals for Implanted Nerve Interfaces [7.335832236913667]
そこで我々は,ラットの坐骨神経で測定された脳波(ENG)信号から感覚刺激を抽出するために,4種類の人工ニューラルネットワーク(ANN)を探索した。
データセットの異なるサイズは、リアルタイム分類のための調査されたANNの実現可能性を分析するために考慮される。
以上の結果から,ANNはリアルタイムアプリケーションに適しており,100ドル,200ドル以上の信号ウィンドウに対して90%以上のアキュラシーを達成でき,その処理時間も低く,病的回復に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-29T15:23:30Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Mental arithmetic task classification with convolutional neural network
based on spectral-temporal features from EEG [0.47248250311484113]
ディープニューラルネットワーク(DNN)は、コンピュータビジョンアプリケーションにおいて大きな優位性を示している。
ここでは、主に2つの畳み込みニューラルネットワーク層を使用し、比較的少ないパラメータと高速で脳波からスペクトル時間的特徴を学習する浅層ニューラルネットワークを提案する。
実験の結果、浅いCNNモデルは他の全てのモデルより優れており、最高分類精度は90.68%に達した。
論文 参考訳(メタデータ) (2022-09-26T02:15:22Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Early Bearing Fault Diagnosis of Rotating Machinery by 1D Self-Organized
Operational Neural Networks [23.455010509133313]
現代の電気回転機械(RM)の予防メンテナンスは、信頼性の高い運転の確保、予測不能な故障の防止、コストのかかる修理の回避に重要である。
本研究では1次元自己組織型ONN(Self-ONNs)を提案する。
NSF/IMSベアリング振動データセットに対する実験結果から,提案した1D Self-ONNは,計算複雑性の類似した最先端(1D CNN)に対して,大きな性能ギャップを達成できることが示された。
論文 参考訳(メタデータ) (2021-09-30T06:32:34Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
スパイクニューラルネットワーク(SNN)は離散スパイクを通して情報を伝達し、空間時間情報を処理するのによく機能する。
適応型自己フィードバックと平衡興奮性および抑制性ニューロン(BackEISNN)を用いた深部スパイクニューラルネットワークを提案する。
MNIST、FashionMNIST、N-MNISTのデータセットに対して、我々のモデルは最先端の性能を達成した。
論文 参考訳(メタデータ) (2021-05-27T08:38:31Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。