On One-Bit Quantization
- URL: http://arxiv.org/abs/2202.05292v1
- Date: Thu, 10 Feb 2022 19:07:06 GMT
- Title: On One-Bit Quantization
- Authors: Sourbh Bhadane and Aaron B. Wagner
- Abstract summary: We characterize the optimal one-bit quantizer for a continuous-time random process that exhibits low-dimensional structure.
We numerically show that this optimal quantizer is found by a neural-network-based compressor trained via gradient descent.
- Score: 27.057313611640918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the one-bit quantizer that minimizes the mean squared error for a
source living in a real Hilbert space. The optimal quantizer is a projection
followed by a thresholding operation, and we provide methods for identifying
the optimal direction along which to project. As an application of our methods,
we characterize the optimal one-bit quantizer for a continuous-time random
process that exhibits low-dimensional structure. We numerically show that this
optimal quantizer is found by a neural-network-based compressor trained via
stochastic gradient descent.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems.
We use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators.
The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes.
arXiv Detail & Related papers (2022-08-01T12:48:48Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
We prove that our quantized RFFs allow a high accuracy approximation of the underlying kernels.
We show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy.
We empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
arXiv Detail & Related papers (2021-06-04T17:24:47Z) - Q-Rater: Non-Convex Optimization for Post-Training Uniform Quantization [9.062897838978955]
Various post-training quant uniformization methods have usually been based on convex optimization.
Our proposed technique presents higher model accuracy, especially for a low quantization.
arXiv Detail & Related papers (2021-05-05T05:14:22Z) - One-Bit Compressed Sensing via One-Shot Hard Thresholding [7.594050968868919]
A problem of 1-bit compressed sensing is to estimate a sparse signal from a few binary measurements.
We present a novel and concise analysis that moves away from the widely used non-constrained notion of width.
arXiv Detail & Related papers (2020-07-07T17:28:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.