Matrix concentration inequalities and efficiency of random universal
sets of quantum gates
- URL: http://arxiv.org/abs/2202.05371v3
- Date: Wed, 12 Apr 2023 16:06:19 GMT
- Title: Matrix concentration inequalities and efficiency of random universal
sets of quantum gates
- Authors: Piotr Dulian and Adam Sawicki
- Abstract summary: For a random set $mathcalS subset U(d)$ of quantum gates we provide bounds on the probability that $mathcalS$ forms a $delta$-approximate $t$-design.
We show that for $mathcalS$ drawn from an exact $t$-design the probability that it forms a $delta$-approximate $t$-design satisfies the inequality $mathbbPleft(delta geq x right)leq 2D_t
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For a random set $\mathcal{S} \subset U(d)$ of quantum gates we provide
bounds on the probability that $\mathcal{S}$ forms a $\delta$-approximate
$t$-design. In particular we have found that for $\mathcal{S}$ drawn from an
exact $t$-design the probability that it forms a $\delta$-approximate
$t$-design satisfies the inequality $\mathbb{P}\left(\delta \geq x \right)\leq
2D_t \, \frac{e^{-|\mathcal{S}| x \,
\mathrm{arctanh}(x)}}{(1-x^2)^{|\mathcal{S}|/2}} = O\left( 2D_t \left(
\frac{e^{-x^2}}{\sqrt{1-x^2}} \right)^{|\mathcal{S}|} \right)$, where $D_t$ is
a sum over dimensions of unique irreducible representations appearing in the
decomposition of $U \mapsto U^{\otimes t}\otimes \bar{U}^{\otimes t}$. We use
our results to show that to obtain a $\delta$-approximate $t$-design with
probability $P$ one needs $O( \delta^{-2}(t\log(d)-\log(1-P)))$ many random
gates. We also analyze how $\delta$ concentrates around its expected value
$\mathbb{E}\delta$ for random $\mathcal{S}$. Our results are valid for both
symmetric and non-symmetric sets of gates.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - A random matrix model for random approximate $t$-designs [1.534667887016089]
A random matrix model is proposed to describe the probability distribution of $delta(nu_mathcalS,t)$ for any $t$.
We show that our model satisfies the so-called spectral gap conjecture, i.e. we prove that with the probability $1$ there is $tinmathbbZ_+$ such that $sup satisfieskinmathbbZ_+delta(k)=delta(t)$.
arXiv Detail & Related papers (2022-10-14T14:50:06Z) - Spiked Covariance Estimation from Modulo-Reduced Measurements [14.569322713960494]
We develop and analyze an algorithm that, for most directions $bfu$ and $nu=mathrmpoly(k)$, estimates $bfu$ to high accuracy using $n=mathrmpoly(k)$ measurements.
Numerical experiments show that the developed algorithm performs well even in a non-asymptotic setting.
arXiv Detail & Related papers (2021-10-04T02:10:47Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Nonasymptotic one-and two-sample tests in high dimension with unknown
covariance structure [0.0]
We consider the problem of testing if $mu is $eta-close to zero, i.e. $|mu| leq eta against $|mu| geq (eta + delta)$.
The aim of this paper is to obtain nonasymptotic upper and lower bounds on the minimal separation distancedelta$ such that we can control both the Type I and Type II errors at a given level.
arXiv Detail & Related papers (2021-09-01T06:22:53Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
We study the problem of reconstructing a perfect matching $M*$ hidden in a randomly weighted $ntimes n$ bipartite graph.
We show that if $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ for an arbitrarily small constant $epsilon>0$, the reconstruction error for any estimator is shown to be bounded away from $0$.
arXiv Detail & Related papers (2021-03-17T00:59:33Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
Linear bandit algorithms yield $tildemathcalO(nsqrtT)$ pseudo-regret bounds on compact convex action sets.
Two types of structural assumptions lead to better pseudo-regret bounds.
arXiv Detail & Related papers (2021-03-10T07:33:03Z) - Optimal Mean Estimation without a Variance [103.26777953032537]
We study the problem of heavy-tailed mean estimation in settings where the variance of the data-generating distribution does not exist.
We design an estimator which attains the smallest possible confidence interval as a function of $n,d,delta$.
arXiv Detail & Related papers (2020-11-24T22:39:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.