Sharp Gap-Dependent Variance-Aware Regret Bounds for Tabular MDPs
- URL: http://arxiv.org/abs/2506.06521v1
- Date: Fri, 06 Jun 2025 20:33:57 GMT
- Title: Sharp Gap-Dependent Variance-Aware Regret Bounds for Tabular MDPs
- Authors: Shulun Chen, Runlong Zhou, Zihan Zhang, Maryam Fazel, Simon S. Du,
- Abstract summary: We show that the Monotonic Value Omega (MVP) algorithm achieves a variance-aware gap-dependent regret bound of $$tildeOleft(left(sum_Delta_h(s,a)>0 fracH2 log K land mathttVar_maxtextc$.
- Score: 54.28273395444243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the gap-dependent regret bounds for episodic MDPs. We show that the Monotonic Value Propagation (MVP) algorithm achieves a variance-aware gap-dependent regret bound of $$\tilde{O}\left(\left(\sum_{\Delta_h(s,a)>0} \frac{H^2 \log K \land \mathtt{Var}_{\max}^{\text{c}}}{\Delta_h(s,a)} +\sum_{\Delta_h(s,a)=0}\frac{ H^2 \land \mathtt{Var}_{\max}^{\text{c}}}{\Delta_{\mathrm{min}}} + SAH^4 (S \lor H) \right) \log K\right),$$ where $H$ is the planning horizon, $S$ is the number of states, $A$ is the number of actions, and $K$ is the number of episodes. Here, $\Delta_h(s,a) =V_h^* (a) - Q_h^* (s, a)$ represents the suboptimality gap and $\Delta_{\mathrm{min}} := \min_{\Delta_h (s,a) > 0} \Delta_h(s,a)$. The term $\mathtt{Var}_{\max}^{\text{c}}$ denotes the maximum conditional total variance, calculated as the maximum over all $(\pi, h, s)$ tuples of the expected total variance under policy $\pi$ conditioned on trajectories visiting state $s$ at step $h$. $\mathtt{Var}_{\max}^{\text{c}}$ characterizes the maximum randomness encountered when learning any $(h, s)$ pair. Our result stems from a novel analysis of the weighted sum of the suboptimality gap and can be potentially adapted for other algorithms. To complement the study, we establish a lower bound of $$\Omega \left( \sum_{\Delta_h(s,a)>0} \frac{H^2 \land \mathtt{Var}_{\max}^{\text{c}}}{\Delta_h(s,a)}\cdot \log K\right),$$ demonstrating the necessity of dependence on $\mathtt{Var}_{\max}^{\text{c}}$ even when the maximum unconditional total variance (without conditioning on $(h, s)$) approaches zero.
Related papers
- On the $O(\frac{\sqrt{d}}{K^{1/4}})$ Convergence Rate of AdamW Measured by $\ell_1$ Norm [54.28350823319057]
This paper establishes the convergence rate $frac1Ksum_k=1KEleft[|nabla f(xk)|_1right]leq O(fracsqrtdCK1/4) for AdamW measured by $ell_$ norm, where $K$ represents the iteration number, $d denotes the model dimension, and $C$ matches the constant in the optimal convergence rate of SGD.
arXiv Detail & Related papers (2025-05-17T05:02:52Z) - Variance-Dependent Regret Lower Bounds for Contextual Bandits [65.93854043353328]
Variance-dependent regret bounds for linear contextual bandits, which improve upon the classical $tildeO(dsqrtK)$ regret bound to $tildeO(dsqrtsum_k=1Ksigma_k2)$.
arXiv Detail & Related papers (2025-03-15T07:09:36Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Partially Unitary Learning [0.0]
An optimal mapping between Hilbert spaces $IN$ of $left|psirightrangle$ and $OUT$ of $left|phirightrangle$ is presented.
An iterative algorithm for finding the global maximum of this optimization problem is developed.
arXiv Detail & Related papers (2024-05-16T17:13:55Z) - On the $O(\rac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm [54.28350823319057]
This paper considers the RMSProp and its momentum extension and establishes the convergence rate of $frac1Tsum_k=1T.<n>Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$.<n>Our convergence rate can be considered to be analogous to the $frac1Tsum_k=1T.
arXiv Detail & Related papers (2024-02-01T07:21:32Z) - A spectral least-squares-type method for heavy-tailed corrupted
regression with unknown covariance \& heterogeneous noise [2.019622939313173]
We revisit heavy-tailed corrupted least-squares linear regression assuming to have a corrupted $n$-sized label-feature sample of at most $epsilon n$ arbitrary outliers.
We propose a near-optimal computationally tractable estimator, based on the power method, assuming no knowledge on $(Sigma,Xi) nor the operator norm of $Xi$.
arXiv Detail & Related papers (2022-09-06T23:37:31Z) - Perturbation Analysis of Randomized SVD and its Applications to Statistics [8.731676546744353]
RSVD is a class of computationally efficient algorithms for computing the truncated SVD of large data matrices.<n>In this paper we derive upper bounds for the $ell$ and $ell_2,infty$ distances between the exact left singular vectors $widehatmathbfU$ of $widehatmathbfM$.<n>We apply our theoretical results to settings where $widehatmathbfM$ is an additive perturbation of some unobserved signal matrix $mathbfM$.
arXiv Detail & Related papers (2022-03-19T07:26:45Z) - Spiked Covariance Estimation from Modulo-Reduced Measurements [14.569322713960494]
We develop and analyze an algorithm that, for most directions $bfu$ and $nu=mathrmpoly(k)$, estimates $bfu$ to high accuracy using $n=mathrmpoly(k)$ measurements.
Numerical experiments show that the developed algorithm performs well even in a non-asymptotic setting.
arXiv Detail & Related papers (2021-10-04T02:10:47Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
We study the problem of reconstructing a perfect matching $M*$ hidden in a randomly weighted $ntimes n$ bipartite graph.
We show that if $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ for an arbitrarily small constant $epsilon>0$, the reconstruction error for any estimator is shown to be bounded away from $0$.
arXiv Detail & Related papers (2021-03-17T00:59:33Z) - Optimal Mean Estimation without a Variance [103.26777953032537]
We study the problem of heavy-tailed mean estimation in settings where the variance of the data-generating distribution does not exist.
We design an estimator which attains the smallest possible confidence interval as a function of $n,d,delta$.
arXiv Detail & Related papers (2020-11-24T22:39:21Z) - $Q$-learning with Logarithmic Regret [60.24952657636464]
We prove that an optimistic $Q$-learning enjoys a $mathcalOleft(fracSAcdot mathrmpolyleft(Hright)Delta_minlogleft(SATright)right)$ cumulative regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the planning horizon, $T$ is the total number of steps, and $Delta_min$ is the minimum sub-optimality gap.
arXiv Detail & Related papers (2020-06-16T13:01:33Z) - Robust Interference Management for SISO Systems with Multiple
Over-the-Air Computations [16.52374405363812]
We consider the over-the-air computation of sums over a shared complex-valued MAC.
Finding appropriate Tx-Rx scaling factors balance between a low error in the computation of $s_n$ and the interference induced by it.
arXiv Detail & Related papers (2020-04-21T11:15:26Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.