A Survey on Programmatic Weak Supervision
- URL: http://arxiv.org/abs/2202.05433v2
- Date: Mon, 14 Feb 2022 05:45:58 GMT
- Title: A Survey on Programmatic Weak Supervision
- Authors: Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, Alexander Ratner
- Abstract summary: We give brief introduction of the PWS learning paradigm and review representative approaches for each PWS's learning workflow.
We identify several critical challenges that remain underexplored in the area to hopefully inspire future directions in the field.
- Score: 74.13976343129966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Labeling training data has become one of the major roadblocks to using
machine learning. Among various weak supervision paradigms, programmatic weak
supervision (PWS) has achieved remarkable success in easing the manual labeling
bottleneck by programmatically synthesizing training labels from multiple
potentially noisy supervision sources. This paper presents a comprehensive
survey of recent advances in PWS. In particular, we give a brief introduction
of the PWS learning paradigm, and review representative approaches for each
component within PWS's learning workflow. In addition, we discuss complementary
learning paradigms for tackling limited labeled data scenarios and how these
related approaches can be used in conjunction with PWS. Finally, we identify
several critical challenges that remain under-explored in the area to hopefully
inspire future research directions in the field.
Related papers
- Unsupervised Meta-Learning via Few-shot Pseudo-supervised Contrastive
Learning [72.3506897990639]
We propose a simple yet effective unsupervised meta-learning framework, coined Pseudo-supervised Contrast (PsCo) for few-shot classification.
PsCo outperforms existing unsupervised meta-learning methods under various in-domain and cross-domain few-shot classification benchmarks.
arXiv Detail & Related papers (2023-03-02T06:10:13Z) - A Survey on Knowledge-Enhanced Pre-trained Language Models [8.54551743144995]
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs)
Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks.
By integrating external knowledge into PLMs, textitunderlineKnowledge-underlineEnhanced underlinePre-trained underlineLanguage underlineModels
arXiv Detail & Related papers (2022-12-27T09:54:14Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
Semi-supervised learning and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled visual data.
We review the recent advanced deep learning algorithms on semi-supervised learning (SSL) and unsupervised learning (UL) for visual recognition from a unified perspective.
arXiv Detail & Related papers (2022-08-24T04:26:21Z) - A Multi-label Continual Learning Framework to Scale Deep Learning
Approaches for Packaging Equipment Monitoring [57.5099555438223]
We study multi-label classification in the continual scenario for the first time.
We propose an efficient approach that has a logarithmic complexity with regard to the number of tasks.
We validate our approach on a real-world multi-label Forecasting problem from the packaging industry.
arXiv Detail & Related papers (2022-08-08T15:58:39Z) - Self-Supervised Representation Learning: Introduction, Advances and
Challenges [125.38214493654534]
Self-supervised representation learning methods aim to provide powerful deep feature learning without the requirement of large annotated datasets.
This article introduces this vibrant area including key concepts, the four main families of approach and associated state of the art, and how self-supervised methods are applied to diverse modalities of data.
arXiv Detail & Related papers (2021-10-18T13:51:22Z) - The Word is Mightier than the Label: Learning without Pointillistic
Labels using Data Programming [11.536162323162099]
Most advanced supervised Machine Learning (ML) models rely on vast amounts of point-by-point labelled training examples.
Hand-labelling vast amounts of data may be tedious, expensive, and error-prone.
arXiv Detail & Related papers (2021-08-24T19:11:28Z) - Self-supervised on Graphs: Contrastive, Generative,or Predictive [25.679620842010422]
Self-supervised learning (SSL) is emerging as a new paradigm for extracting informative knowledge through well-designed pretext tasks.
We divide existing graph SSL methods into three categories: contrastive, generative, and predictive.
We also summarize the commonly used datasets, evaluation metrics, downstream tasks, and open-source implementations of various algorithms.
arXiv Detail & Related papers (2021-05-16T03:30:03Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
We introduce generalizations that ensure that our approach is both cost-aware and allows for fine-grained selection of examples through partially labeled scenes.
Our experiments on a real-world, large-scale self-driving dataset suggest that fine-grained selection can improve the performance across perception, prediction, and downstream planning tasks.
arXiv Detail & Related papers (2021-04-08T17:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.