A Comprehensive Survey of Machine Unlearning Techniques for Large Language Models
- URL: http://arxiv.org/abs/2503.01854v1
- Date: Sat, 22 Feb 2025 12:46:14 GMT
- Title: A Comprehensive Survey of Machine Unlearning Techniques for Large Language Models
- Authors: Jiahui Geng, Qing Li, Herbert Woisetschlaeger, Zongxiong Chen, Yuxia Wang, Preslav Nakov, Hans-Arno Jacobsen, Fakhri Karray,
- Abstract summary: This study investigates the machine unlearning techniques within the context of large language models (LLMs)<n>LLMs unlearning offers a principled approach to removing the influence of undesirable data from LLMs.<n>Despite growing research interest, there is no comprehensive survey that systematically organizes existing work and distills key insights.
- Score: 36.601209595620446
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study investigates the machine unlearning techniques within the context of large language models (LLMs), referred to as \textit{LLM unlearning}. LLM unlearning offers a principled approach to removing the influence of undesirable data (e.g., sensitive or illegal information) from LLMs, while preserving their overall utility without requiring full retraining. Despite growing research interest, there is no comprehensive survey that systematically organizes existing work and distills key insights; here, we aim to bridge this gap. We begin by introducing the definition and the paradigms of LLM unlearning, followed by a comprehensive taxonomy of existing unlearning studies. Next, we categorize current unlearning approaches, summarizing their strengths and limitations. Additionally, we review evaluation metrics and benchmarks, providing a structured overview of current assessment methodologies. Finally, we outline promising directions for future research, highlighting key challenges and opportunities in the field.
Related papers
- How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.
We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - Unveiling Entity-Level Unlearning for Large Language Models: A Comprehensive Analysis [32.455702022397666]
Large language model unlearning has garnered increasing attention due to its potential to address security and privacy concerns.<n>Much of this research has concentrated on instance-level unlearning, specifically targeting the removal of predefined instances containing sensitive content.<n>We propose a novel task of entity-level unlearning, which aims to erase entity-related knowledge from the target model completely.
arXiv Detail & Related papers (2024-06-22T09:40:07Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - Recent Advances of Foundation Language Models-based Continual Learning: A Survey [31.171203978742447]
Foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV)
However, they can not emulate human-like continuous learning due to catastrophic forgetting.
Various continual learning (CL)-based methodologies have been developed to refine LMs, enabling them to adapt to new tasks without forgetting previous knowledge.
arXiv Detail & Related papers (2024-05-28T23:32:46Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - Machine Unlearning for Traditional Models and Large Language Models: A Short Survey [11.539080008361662]
Machine unlearning aims to delete data and reduce its impact on models according to user requests.
This paper categorizes and investigates unlearning on both traditional models and Large Language Models (LLMs)
arXiv Detail & Related papers (2024-04-01T16:08:18Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
We make a systematic review of the literature, including the general methodology of supervised fine-tuning (SFT)<n>We also review the potential pitfalls of SFT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies.
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
Semi-supervised learning and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled visual data.
We review the recent advanced deep learning algorithms on semi-supervised learning (SSL) and unsupervised learning (UL) for visual recognition from a unified perspective.
arXiv Detail & Related papers (2022-08-24T04:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.