Dilated convolutional neural network-based deep reference picture
generation for video compression
- URL: http://arxiv.org/abs/2202.05514v1
- Date: Fri, 11 Feb 2022 09:06:18 GMT
- Title: Dilated convolutional neural network-based deep reference picture
generation for video compression
- Authors: Haoyue Tian, Pan Gao, Ran Wei, Manoranjan Paul
- Abstract summary: We propose a deep reference picture generator which can create a picture that is more relevant to the current encoding frame.
Inspired by the recent progress of Convolutional Neural Network(CNN), this paper proposes to use a dilated CNN to build the generator.
- Score: 16.42377608366894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion estimation and motion compensation are indispensable parts of inter
prediction in video coding. Since the motion vector of objects is mostly in
fractional pixel units, original reference pictures may not accurately provide
a suitable reference for motion compensation. In this paper, we propose a deep
reference picture generator which can create a picture that is more relevant to
the current encoding frame, thereby further reducing temporal redundancy and
improving video compression efficiency. Inspired by the recent progress of
Convolutional Neural Network(CNN), this paper proposes to use a dilated CNN to
build the generator. Moreover, we insert the generated deep picture into
Versatile Video Coding(VVC) as a reference picture and perform a comprehensive
set of experiments to evaluate the effectiveness of our network on the latest
VVC Test Model VTM. The experimental results demonstrate that our proposed
method achieves on average 9.7% bit saving compared with VVC under low-delay P
configuration.
Related papers
- Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.
Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.
Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - VQ-NeRV: A Vector Quantized Neural Representation for Videos [3.6662666629446043]
Implicit neural representations (INR) excel in encoding videos within neural networks, showcasing promise in computer vision tasks like video compression and denoising.
We introduce an advanced U-shaped architecture, Vector Quantized-NeRV (VQ-NeRV), which integrates a novel component--the VQ-NeRV Block.
This block incorporates a codebook mechanism to discretize the network's shallow residual features and inter-frame residual information effectively.
arXiv Detail & Related papers (2024-03-19T03:19:07Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
In the framework of learned image compression, the context model plays a pivotal role in capturing the dependencies among latent representations.
We propose the textbfCorner-to-Center transformer-based Context Model (C$3$M) designed to enhance context and latent predictions.
In addition, to enlarge the receptive field in the analysis and synthesis transformation, we use the Long-range Crossing Attention Module (LCAM) in the encoder/decoder.
arXiv Detail & Related papers (2023-11-29T21:40:28Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
It is more efficient to enhance/analyze the coded representations directly without decoding them into pixels.
We propose a versatile neural video coding (VNVC) framework, which targets learning compact representations to support both reconstruction and direct enhancement/analysis.
arXiv Detail & Related papers (2023-06-19T03:04:57Z) - Towards Scalable Neural Representation for Diverse Videos [68.73612099741956]
Implicit neural representations (INR) have gained increasing attention in representing 3D scenes and images.
Existing INR-based methods are limited to encoding a handful of short videos with redundant visual content.
This paper focuses on developing neural representations for encoding long and/or a large number of videos with diverse visual content.
arXiv Detail & Related papers (2023-03-24T16:32:19Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - End-to-end Neural Video Coding Using a Compound Spatiotemporal
Representation [33.54844063875569]
We propose a hybrid motion compensation (HMC) method that adaptively combines the predictions generated by two approaches.
Specifically, we generate a compoundtemporal representation (STR) through a recurrent information aggregation (RIA) module.
We further design a one-to-many decoder pipeline to generate multiple predictions from the CSTR, including vector-based resampling, adaptive kernel-based resampling, compensation mode selection maps and texture enhancements.
arXiv Detail & Related papers (2021-08-05T19:43:32Z) - FVC: A New Framework towards Deep Video Compression in Feature Space [21.410266039564803]
We propose a feature-space video coding network (FVC) by performing all major operations (i.e., motion estimation, motion compression, motion compensation and residual compression) in the feature space.
The proposed framework achieves the state-of-the-art performance on four benchmark datasets including HEVC, UVG, VTL and MCL-JCV.
arXiv Detail & Related papers (2021-05-20T08:55:32Z) - Neural Video Coding using Multiscale Motion Compensation and
Spatiotemporal Context Model [45.46660511313426]
We propose an end-to-end deep neural video coding framework (NVC)
It uses variational autoencoders (VAEs) with joint spatial and temporal prior aggregation (PA) to exploit the correlations in intra-frame pixels, inter-frame motions and inter-frame compensation residuals.
NVC is evaluated for the low-delay causal settings and compared with H.265/HEVC, H.264/AVC and the other learnt video compression methods.
arXiv Detail & Related papers (2020-07-09T06:15:17Z) - Cascaded Deep Video Deblurring Using Temporal Sharpness Prior [88.98348546566675]
The proposed algorithm mainly consists of optical flow estimation from intermediate latent frames and latent frame restoration steps.
It first develops a deep CNN model to estimate optical flow from intermediate latent frames and then restores the latent frames based on the estimated optical flow.
We show that exploring the domain knowledge of video deblurring is able to make the deep CNN model more compact and efficient.
arXiv Detail & Related papers (2020-04-06T09:13:49Z) - Deep Blind Video Super-resolution [85.79696784460887]
We propose a deep convolutional neural network (CNN) model to solve video SR by a blur kernel modeling approach.
The proposed CNN model consists of motion blur estimation, motion estimation, and latent image restoration modules.
We show that the proposed algorithm is able to generate clearer images with finer structural details.
arXiv Detail & Related papers (2020-03-10T13:43:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.