VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision
- URL: http://arxiv.org/abs/2306.10681v2
- Date: Wed, 1 Nov 2023 04:14:05 GMT
- Title: VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision
- Authors: Xihua Sheng, Li Li, Dong Liu, Houqiang Li
- Abstract summary: It is more efficient to enhance/analyze the coded representations directly without decoding them into pixels.
We propose a versatile neural video coding (VNVC) framework, which targets learning compact representations to support both reconstruction and direct enhancement/analysis.
- Score: 59.632286735304156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Almost all digital videos are coded into compact representations before being
transmitted. Such compact representations need to be decoded back to pixels
before being displayed to humans and - as usual - before being
enhanced/analyzed by machine vision algorithms. Intuitively, it is more
efficient to enhance/analyze the coded representations directly without
decoding them into pixels. Therefore, we propose a versatile neural video
coding (VNVC) framework, which targets learning compact representations to
support both reconstruction and direct enhancement/analysis, thereby being
versatile for both human and machine vision. Our VNVC framework has a
feature-based compression loop. In the loop, one frame is encoded into compact
representations and decoded to an intermediate feature that is obtained before
performing reconstruction. The intermediate feature can be used as reference in
motion compensation and motion estimation through feature-based temporal
context mining and cross-domain motion encoder-decoder to compress the
following frames. The intermediate feature is directly fed into video
reconstruction, video enhancement, and video analysis networks to evaluate its
effectiveness. The evaluation shows that our framework with the intermediate
feature achieves high compression efficiency for video reconstruction and
satisfactory task performances with lower complexities.
Related papers
- High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
arXiv Detail & Related papers (2024-10-03T15:40:58Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - FFNeRV: Flow-Guided Frame-Wise Neural Representations for Videos [5.958701846880935]
We propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos.
With model compression techniques, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
arXiv Detail & Related papers (2022-12-23T12:51:42Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
We propose a traditional-neural mixed coding framework that takes advantage of both traditional codecs and neural networks (NNs)
The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved.
We build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach.
arXiv Detail & Related papers (2022-02-06T16:29:15Z) - Human-Machine Collaborative Video Coding Through Cuboidal Partitioning [26.70051123157869]
We propose a video coding framework by leveraging on to the commonality that exists between human vision and machine vision applications using cuboids.
Cuboids, estimated rectangular regions over a video frame, are computationally efficient, has a compact representation and object centric.
Herein cuboidal feature descriptors are extracted from the current frame and then employed for accomplishing a machine vision task in the form of object detection.
arXiv Detail & Related papers (2021-02-02T04:44:45Z) - Video Coding for Machines: A Paradigm of Collaborative Compression and
Intelligent Analytics [127.65410486227007]
Video coding, which targets to compress and reconstruct the whole frame, and feature compression, which only preserves and transmits the most critical information, stand at two ends of the scale.
Recent endeavors in imminent trends of video compression, e.g. deep learning based coding tools and end-to-end image/video coding, and MPEG-7 compact feature descriptor standards, promote the sustainable and fast development in their own directions.
In this paper, thanks to booming AI technology, e.g. prediction and generation models, we carry out exploration in the new area, Video Coding for Machines (VCM), arising from the emerging MPEG
arXiv Detail & Related papers (2020-01-10T17:24:13Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM) aims to bridge the gap between visual feature compression and classical video coding.
We employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames.
arXiv Detail & Related papers (2020-01-09T14:18:18Z) - Towards Coding for Human and Machine Vision: A Scalable Image Coding
Approach [104.02201472370801]
We come up with a novel image coding framework by leveraging both the compressive and the generative models.
By introducing advanced generative models, we train a flexible network to reconstruct images from compact feature representations and the reference pixels.
Experimental results demonstrate the superiority of our framework in both human visual quality and facial landmark detection.
arXiv Detail & Related papers (2020-01-09T10:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.