High-dimensional Inference and FDR Control for Simulated Markov Random
Fields
- URL: http://arxiv.org/abs/2202.05612v3
- Date: Sat, 20 Jan 2024 03:21:05 GMT
- Title: High-dimensional Inference and FDR Control for Simulated Markov Random
Fields
- Authors: Haoyu Wei, Xiaoyu Lei, Yixin Han, Huiming Zhang
- Abstract summary: This article explores statistical inference for simulated Markov random fields in high-dimensional settings.
We introduce a methodology based on Maximum Chain Monte Carlo Likelihood Estimation with Elastic-net regularization.
- Score: 1.9458156037869137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying important features linked to a response variable is a fundamental
task in various scientific domains. This article explores statistical inference
for simulated Markov random fields in high-dimensional settings. We introduce a
methodology based on Markov Chain Monte Carlo Maximum Likelihood Estimation
(MCMC-MLE) with Elastic-net regularization. Under mild conditions on the MCMC
method, our penalized MCMC-MLE method achieves $\ell_{1}$-consistency. We
propose a decorrelated score test, establishing both its asymptotic normality
and that of a one-step estimator, along with the associated confidence
interval. Furthermore, we construct two false discovery rate control procedures
via the asymptotic behaviors for both p-values and e-values. Comprehensive
numerical simulations confirm the theoretical validity of the proposed methods.
Related papers
- Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
We develop novel high-dimensional concentration inequalities and Berry-Esseen bounds for vector- and matrix-valued functions of Markov chains.
We analyze the TD learning algorithm, a widely used method for policy evaluation in reinforcement learning.
arXiv Detail & Related papers (2025-02-19T15:33:55Z) - Semiparametric inference for impulse response functions using double/debiased machine learning [49.1574468325115]
We introduce a machine learning estimator for the impulse response function (IRF) in settings where a time series of interest is subjected to multiple discrete treatments.
The proposed estimator can rely on fully nonparametric relations between treatment and outcome variables, opening up the possibility to use flexible machine learning approaches to estimate IRFs.
arXiv Detail & Related papers (2024-11-15T07:42:02Z) - Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data.
Online sequential IWAE (OSIWAE) allows for online learning of both model parameters and a Markovian recognition model for inferring latent states.
This approach is more theoretically well-founded than recently proposed online variational SMC methods.
arXiv Detail & Related papers (2024-11-04T16:12:37Z) - Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking [21.23500484100963]
We introduce a statistic that assesses almost dominance under the framework of Optimal Transport with a smooth cost.
We also propose a hypothesis testing framework as well as an efficient implementation using the Sinkhorn algorithm.
We showcase our method in comparing and benchmarking Large Language Models that are evaluated on multiple metrics.
arXiv Detail & Related papers (2024-06-10T16:14:50Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Adaptive sparseness for correntropy-based robust regression via
automatic relevance determination [17.933460891374498]
We integrate the maximum correntropy criterion (MCC) based robust regression algorithm with the automatic relevance determination (ARD) technique in a Bayesian framework.
We use an inherent noise assumption from the MCC to derive an explicit likelihood function, and realize the maximum a posteriori (MAP) estimation with the ARD prior.
MCC-ARD achieves superior prediction performance and feature selection capability than L1-regularized MCC, as demonstrated by a noisy and high-dimensional simulation study.
arXiv Detail & Related papers (2023-01-31T20:23:32Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) is a popular model to generate random graphs with community structure given an expected degree sequence.
Standard approach of community detection based on the DCSBM is to search for the model parameters that are the most likely to have produced the observed network data through maximum likelihood estimation (MLE)
We present mathematical programming formulations and exact solution methods that can provably find the model parameters and community assignments of maximum likelihood given an observed graph.
arXiv Detail & Related papers (2021-01-26T22:04:40Z) - Rigid and Articulated Point Registration with Expectation Conditional
Maximization [20.096170794358315]
We introduce an innovative EM-like algorithm, namely the Conditional Expectation Maximization for Point Registration (ECMPR) algorithm.
We analyse in detail the associated consequences in terms of estimation of the registration parameters.
We extend rigid registration to articulated registration.
arXiv Detail & Related papers (2020-12-09T17:36:11Z) - Non-convex Learning via Replica Exchange Stochastic Gradient MCMC [25.47669573608621]
We propose an adaptive replica exchange SGMCMC (reSGMCMC) to automatically correct the bias and study the corresponding properties.
Empirically, we test the algorithm through extensive experiments on various setups and obtain the results.
arXiv Detail & Related papers (2020-08-12T15:02:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.