Semiparametric inference for impulse response functions using double/debiased machine learning
- URL: http://arxiv.org/abs/2411.10009v1
- Date: Fri, 15 Nov 2024 07:42:02 GMT
- Title: Semiparametric inference for impulse response functions using double/debiased machine learning
- Authors: Daniele Ballinari, Alexander Wehrli,
- Abstract summary: We introduce a machine learning estimator for the impulse response function (IRF) in settings where a time series of interest is subjected to multiple discrete treatments.
The proposed estimator can rely on fully nonparametric relations between treatment and outcome variables, opening up the possibility to use flexible machine learning approaches to estimate IRFs.
- Score: 49.1574468325115
- License:
- Abstract: We introduce a double/debiased machine learning (DML) estimator for the impulse response function (IRF) in settings where a time series of interest is subjected to multiple discrete treatments, assigned over time, which can have a causal effect on future outcomes. The proposed estimator can rely on fully nonparametric relations between treatment and outcome variables, opening up the possibility to use flexible machine learning approaches to estimate IRFs. To this end, we extend the theory of DML from an i.i.d. to a time series setting and show that the proposed DML estimator for the IRF is consistent and asymptotically normally distributed at the parametric rate, allowing for semiparametric inference for dynamic effects in a time series setting. The properties of the estimator are validated numerically in finite samples by applying it to learn the IRF in the presence of serial dependence in both the confounder and observation innovation processes. We also illustrate the methodology empirically by applying it to the estimation of the effects of macroeconomic shocks.
Related papers
- Non-parametric efficient estimation of marginal structural models with multi-valued time-varying treatments [0.9558392439655012]
We use machine learning together with recent developments in semi-parametric efficiency theory for longitudinal studies to propose such an estimator.
We show conditions under which the proposed estimator is efficient as anally normal, and sequentially doubly robust in the sense that it is consistent if, for each time point, either the outcome or the treatment mechanism is consistently estimated.
arXiv Detail & Related papers (2024-09-27T14:29:12Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Orthogonal Series Estimation for the Ratio of Conditional Expectation
Functions [2.855485723554975]
This chapter develops the general framework for estimation and inference on conditional expectation functions (CEFR)
We derive the pointwise and uniform results for estimation and inference on CEFR, including the validity of the Gaussian bootstrap.
We apply the proposed method to estimate the causal effect of the 401(k) program on household assets.
arXiv Detail & Related papers (2022-12-26T13:01:17Z) - Unsupervised representation learning with recognition-parametrised
probabilistic models [12.865596223775649]
We introduce a new approach to probabilistic unsupervised learning based on the recognition-parametrised model ( RPM)
Under the key assumption that observations are conditionally independent given latents, the RPM combines parametric prior observation-conditioned latent distributions with non-parametric observationfactors.
The RPM provides a powerful framework to discover meaningful latent structure underlying observational data, a function critical to both animal and artificial intelligence.
arXiv Detail & Related papers (2022-09-13T00:33:21Z) - Treatment Effect Estimation with Observational Network Data using
Machine Learning [0.0]
Causal inference methods for treatment effect estimation usually assume independent units.
We develop augmented inverse probability (AIPW) for estimation and inference of the direct effect of the treatment with observational data from a single (social) network with spillover effects.
arXiv Detail & Related papers (2022-06-29T12:52:41Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.