論文の概要: Semi-Supervised GCN for learning Molecular Structure-Activity
Relationships
- arxiv url: http://arxiv.org/abs/2202.05704v1
- Date: Tue, 25 Jan 2022 09:09:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-20 18:11:07.999417
- Title: Semi-Supervised GCN for learning Molecular Structure-Activity
Relationships
- Title(参考訳): 分子構造-活性関係学習のためのセミスーパービジョンGCN
- Authors: Alessio Ragno, Dylan Savoia, Roberto Capobianco
- Abstract要約: そこで本稿では,半教師付き学習を用いたグラフ-グラフ間ニューラルネットワークの学習手法を提案する。
最終目標として、我々のアプローチは、アクティビティ崖、リード最適化、デノボドラッグデザインといった問題に対処するための貴重なツールとなる可能性がある。
- 参考スコア(独自算出の注目度): 4.468952886990851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the introduction of artificial intelligence in medicinal chemistry, the
necessity has emerged to analyse how molecular property variation is modulated
by either single atoms or chemical groups. In this paper, we propose to train
graph-to-graph neural network using semi-supervised learning for attributing
structure-property relationships. As initial case studies we apply the method
to solubility and molecular acidity while checking its consistency in
comparison with known experimental chemical data. As final goal, our approach
could represent a valuable tool to deal with problems such as activity cliffs,
lead optimization and de-novo drug design.
- Abstract(参考訳): 医薬化学における人工知能の導入以来、分子の性質の変化が単一原子または化学グループによってどのように調節されるかを分析する必要性が浮上してきた。
本稿では,半教師付き学習を用いたグラフ-グラフニューラルネットワークの学習法を提案する。
最初のケーススタディとして、この手法を溶解性と分子酸度に適用し、既知の実験化学データとの比較でその一貫性を確認した。
最終目標として、我々のアプローチは、アクティビティ崖、リード最適化、デノボドラッグデザインといった問題に対処するための貴重なツールとなる可能性がある。
関連論文リスト
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
本稿では,デコーダのみのグラフトランスフォーマアーキテクチャであるGraphXFormについて述べる。
液液抽出のための2つの溶媒設計課題について評価し,4つの最先端分子設計技術より優れていることを示した。
論文 参考訳(メタデータ) (2024-11-03T19:45:15Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
約140,000個の小分子からなる大規模かつ高精度な分子表現データセットを構築した。
我々のデータセットは、モデルの開発と設計をガイドするために、重要な物理化学的解釈性を提供します。
このデータセットは、分子表現学習のためのより正確で信頼性の高いベンチマークとして機能すると考えています。
論文 参考訳(メタデータ) (2024-06-13T02:50:23Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning [10.025809630976065]
本稿では,より堅牢で一般化可能な化学知識を学習する,新しい事前学習フレームワークを提案する。
提案手法は,種々の分子特性ベンチマークにおける競合性能を示す。
論文 参考訳(メタデータ) (2023-11-05T23:47:52Z) - Unsupervised Learning of Molecular Embeddings for Enhanced Clustering
and Emergent Properties for Chemical Compounds [2.6803933204362336]
SMILESデータに基づく化合物の検出とクラスタリングのための様々な手法を提案する。
埋め込みデータを用いて化合物のグラフィカルな構造を解析し, しきい値を満たすためにベクトル探索を用いる。
また、GPT3.5を用いたベクトルデータベースに格納された自然言語記述埋め込みを用い、ベースモデルより優れていた。
論文 参考訳(メタデータ) (2023-10-25T18:00:24Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - BERT Learns (and Teaches) Chemistry [5.653789128055942]
そこで本研究では,データ駆動の観点から,機能基および他の特性に影響を及ぼす分子サブ構造の研究に注意を払わせることを提案する。
次に, モデルで学習した官能基と原子の表現を適用し, 毒性, 溶解度, 薬物類似性, アクセシビリティの問題に対処する。
論文 参考訳(メタデータ) (2020-07-11T00:23:07Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
本稿では,ラベル付き分子とラベルなし分子の両方を組み込んだ,アクティブ半教師付きグラフニューラルネットワーク(ASGN)を提案する。
教師モデルでは,分子構造や分子分布から情報を共同で活用する汎用表現を学習するための,新しい半教師付き学習手法を提案する。
最後に,分子多様性の観点から,フレームワーク学習全体を通して情報的データを選択するための新しい能動的学習戦略を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。