論文の概要: Artificial Intelligence and Auction Design
- arxiv url: http://arxiv.org/abs/2202.05947v1
- Date: Sat, 12 Feb 2022 00:54:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 12:11:06.053838
- Title: Artificial Intelligence and Auction Design
- Title(参考訳): 人工知能とオークションデザイン
- Authors: Martino Banchio, Andrzej Skrzypacz
- Abstract要約: 付加的なフィードバックを伴わないファーストプライスのオークションが,暗黙的な結果につながることが判明した。
この違いは, 単価の競売において, 競争相手を1つの入札インクリメントで圧倒するインセンティブによって引き起こされることを示す。
また、Googleが第1価格のオークションに切り替えたときに導入した最低入札に関する情報が、オークションの競争力を高めることも示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by online advertising auctions, we study auction design in repeated
auctions played by simple Artificial Intelligence algorithms (Q-learning). We
find that first-price auctions with no additional feedback lead to
tacit-collusive outcomes (bids lower than values), while second-price auctions
do not. We show that the difference is driven by the incentive in first-price
auctions to outbid opponents by just one bid increment. This facilitates
re-coordination on low bids after a phase of experimentation. We also show that
providing information about lowest bid to win, as introduced by Google at the
time of switch to first-price auctions, increases competitiveness of auctions.
- Abstract(参考訳): オンライン広告オークションに動機づけられ,単純な人工知能アルゴリズム(q-learning)による繰り返しオークションにおけるオークションデザインの研究を行った。
付加的なフィードバックのない第1価格オークションは暗黙的な結果(値よりも2倍低い)につながるが、第2価格オークションはそうではない。
この違いは、対決を1回の入札インセンティブで上回る価格オークションのインセンティブによって引き起こされることを示している。
これは実験段階の後に低入札の再調整を促進する。
また、Googleが第1価格のオークションに切り替えたときに導入した最低入札に関する情報が、オークションの競争力を高めることも示している。
関連論文リスト
- A pragmatic policy learning approach to account for users' fatigue in repeated auctions [47.75983850930121]
MLモデルは、前回のオークションが現在の機会価値をどの程度獲得したかを予測することができる。
この予測を用いて、現在の競売の予想利益を最大化する政策を、患者と呼ぶことができる。
我々は、このコストの浸透の重要性について、実証的な2つの論証を提示した。
論文 参考訳(メタデータ) (2024-07-15T07:53:29Z) - Learning in Repeated Multi-Unit Pay-As-Bid Auctions [3.6294895527930504]
複数単位のペイ・アズ・バイドオークションの入札方法を学ぶことの問題点を考察する。
バイド・バイド・オークションの入札方法を学ぶという問題は、アクション・スペースの性質によって困難である。
時間動的計画法を用いて,オフライン問題に対する最適解が得られることを示す。
論文 参考訳(メタデータ) (2023-07-27T20:49:28Z) - Autobidders with Budget and ROI Constraints: Efficiency, Regret, and Pacing Dynamics [53.62091043347035]
オンライン広告プラットフォームで競合するオートバイディングアルゴリズムのゲームについて検討する。
本稿では,全ての制約を満たすことを保証し,個人の後悔を解消する勾配に基づく学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T21:59:30Z) - Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions [42.002983450368134]
プライスオークションでの競売の仕方について検討する。
第二価格のオークションとは異なり、個人価値を真に入札することはもはや最適ではない。
1つは1つの点予測が可能であり、もう1つはヒント間隔が利用可能である。
論文 参考訳(メタデータ) (2022-11-05T19:20:53Z) - No-regret Learning in Repeated First-Price Auctions with Budget
Constraints [5.834615090865286]
定常競争下での最適非予測戦略に対して,RLに基づく入札アルゴリズムを提案する。
提案アルゴリズムは,各ラウンドの最後にすべての入札が明らかになった場合,$widetilde O(sqrt T)$-regretを求める。
論文 参考訳(メタデータ) (2022-05-29T04:32:05Z) - Fast Rate Learning in Stochastic First Price Bidding [0.0]
ファーストプライスのオークションは、プログラム広告におけるビックレーのオークションに基づく伝統的な入札アプローチを大きく置き換えている。
対戦相手の最大入札分布が分かっている場合, 後悔度を著しく低くする方法を示す。
我々のアルゴリズムは、様々な入札分布の文献で提案されている選択肢よりもはるかに高速に収束する。
論文 参考訳(メタデータ) (2021-07-05T07:48:52Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
リアルタイム入札(Real-Time Bidding)は、インターネット広告システムで、近年非常に人気を集めている。
本稿では、経済的な側面だけでなく、広告システムの機能にかかわる他の要因も考慮した、新たなアプローチによる代替ベッティングシステムを提案する。
論文 参考訳(メタデータ) (2020-10-22T18:36:41Z) - ProportionNet: Balancing Fairness and Revenue for Auction Design with
Deep Learning [55.76903822619047]
本研究では,強力なインセンティブ保証を備えた収益最大化オークションの設計について検討する。
我々は、高い収益と強力なインセンティブ保証を維持しつつ、公平性の懸念に対処するため、深層学習を用いてオークションを近似する手法を拡張した。
論文 参考訳(メタデータ) (2020-10-13T13:54:21Z) - Learning to Bid Optimally and Efficiently in Adversarial First-price
Auctions [40.30925727499806]
我々は,$widetildeO(sqrtT)$ regretを達成する,最初のミニマックス最適オンライン入札アルゴリズムを開発した。
Verizon Mediaから得られた3つの実世界の1価オークションデータセットを用いて,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-07-09T05:40:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。