論文の概要: TATTOOED: A Robust Deep Neural Network Watermarking Scheme based on Spread-Spectrum Channel Coding
- arxiv url: http://arxiv.org/abs/2202.06091v3
- Date: Mon, 3 Jun 2024 12:59:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 04:58:43.605014
- Title: TATTOOED: A Robust Deep Neural Network Watermarking Scheme based on Spread-Spectrum Channel Coding
- Title(参考訳): TATTOOED:拡散スペクトルチャネル符号化に基づくロバストなディープニューラルネットワーク透かし方式
- Authors: Giulio Pagnotta, Dorjan Hitaj, Briland Hitaj, Fernando Perez-Cruz, Luigi V. Mancini,
- Abstract要約: TATTOOEDは、既存の脅威に対して堅牢な新しいDNN透かし技術である。
TATTOOEDはトレーニングパイプラインで簡単に使用でき、モデルパフォーマンスに無視できる影響があることを示す。
- 参考スコア(独自算出の注目度): 39.27195025895401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking of deep neural networks (DNNs) has gained significant traction in recent years, with numerous (watermarking) strategies being proposed as mechanisms that can help verify the ownership of a DNN in scenarios where these models are obtained without the permission of the owner. However, a growing body of work has demonstrated that existing watermarking mechanisms are highly susceptible to removal techniques, such as fine-tuning, parameter pruning, or shuffling. In this paper, we build upon extensive prior work on covert (military) communication and propose TATTOOED, a novel DNN watermarking technique that is robust to existing threats. We demonstrate that using TATTOOED as their watermarking mechanisms, the DNN owner can successfully obtain the watermark and verify model ownership even in scenarios where 99% of model parameters are altered. Furthermore, we show that TATTOOED is easy to employ in training pipelines, and has negligible impact on model performance.
- Abstract(参考訳): 近年、ディープニューラルネットワーク(DNN)の透かしは、所有者の許可なくこれらのモデルが取得されるシナリオにおいて、DNNの所有権を検証するメカニズムとして多くの(透かし)戦略が提案されている。
しかし, 既存の透かし機構は, 微調整, パラメータの刈り取り, シャッフルなど, 除去技術に非常に敏感であることが示された。
本稿では,既存の脅威に対して堅牢な新しいDNN透かし技術であるTATTOOEDを提案する。
DNN所有者は, TATTOOEDを透かし機構として使用することにより, 99%のモデルパラメータが変更されている場合においても, 透かしを取得し, モデルのオーナシップを検証できることを示した。
さらに、TATTOOEDは、トレーニングパイプラインで簡単に使用でき、モデルパフォーマンスに無視できる影響があることが示される。
関連論文リスト
- DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking [15.394110881491773]
DeepiSign-Gは、CNNやRNNを含む主要なDNNアーキテクチャの包括的な検証のために設計された汎用的な透かし方式である。
従来のハッシュ技術とは異なり、DeepiSign-Gはモデルに直接メタデータを組み込むことができ、詳細な自己完結型トラッキングと検証を可能にする。
我々は,CNNモデル(VGG,ResNets,DenseNet)やRNN(テキスト感情分類器)など,さまざまなアーキテクチャにおけるDeepiSign-Gの適用性を実証する。
論文 参考訳(メタデータ) (2024-07-01T13:15:38Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
大規模言語モデル(LLM)は、さまざまな機械学習タスクにまたがる汎用インテリジェンスを示す。
敵はモデル抽出攻撃を利用して モデル生成で符号化された モデルインテリジェンスを盗むことができる
ウォーターマーキング技術は、モデル生成コンテンツにユニークな識別子を埋め込むことによって、このような攻撃を防御する有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-03T06:41:48Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
バックドアベースのオーナシップ検証が最近人気となり,モデルオーナがモデルをウォーターマークすることが可能になった。
本研究では,これらの透かし除去モデルを発見し,それらの透かし挙動を復元するミニマックス定式化を提案する。
本手法は,パラメトリックな変化と多数のウォーターマーク除去攻撃に対するモデル透かしの堅牢性を向上させる。
論文 参考訳(メタデータ) (2023-09-09T12:46:08Z) - Rethinking White-Box Watermarks on Deep Learning Models under Neural
Structural Obfuscation [24.07604618918671]
ディープニューラルネットワーク(DNN)に対する著作権保護は、AI企業にとって緊急の必要性である。
ホワイトボックスの透かしは、最も知られている透かし除去攻撃に対して正確で、信頼性があり、安全であると考えられている。
主要なホワイトボックスの透かしは、一般的に、テクストダミーニューロンによる神経構造難読化に対して脆弱である。
論文 参考訳(メタデータ) (2023-03-17T02:21:41Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z) - Robust Black-box Watermarking for Deep NeuralNetwork using Inverse
Document Frequency [1.2502377311068757]
テキストドメイン用に設計されたディープニューラルネットワーク(DNN)モデルを透かし出すためのフレームワークを提案する。
提案した埋め込み手順はモデルのトレーニング時間内に行われ、透かし検証ステージが簡単になる。
実験の結果, 透かし付きモデルでは, 元のモデルと同じ精度を示した。
論文 参考訳(メタデータ) (2021-03-09T17:56:04Z) - Don't Forget to Sign the Gradients! [60.98885980669777]
GradSignsはディープニューラルネットワーク(DNN)のための新しい透かしフレームワーク
深部ニューラルネットワーク(DNN)のための新しい透かしフレームワークであるGradSignsを紹介します。
論文 参考訳(メタデータ) (2021-03-05T14:24:32Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。