論文の概要: Ultra-fine Entity Typing with Indirect Supervision from Natural Language
Inference
- arxiv url: http://arxiv.org/abs/2202.06167v1
- Date: Sat, 12 Feb 2022 23:56:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-16 11:33:59.024711
- Title: Ultra-fine Entity Typing with Indirect Supervision from Natural Language
Inference
- Title(参考訳): 自然言語推論からの間接的監督による超微細エンティティ型付け
- Authors: Bangzheng Li, Wenpeng Yin, Muhao Chen
- Abstract要約: この研究は、エンティティ型付けを自然言語推論(NLI)問題として定式化する新しいアプローチであるLITEを提示する。
実験により、LITEは訓練データに制限があるため、UFETタスクにおける最先端のパフォーマンスが得られることが示された。
- 参考スコア(独自算出の注目度): 28.78215056129358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of ultra-fine entity typing (UFET) seeks to predict diverse and
free-form words or phrases that describe the appropriate types of entities
mentioned in sentences. A key challenge for this task lies in the large amount
of types and the scarcity of annotated data per type. Existing systems
formulate the task as a multi-way classification problem and train directly or
distantly supervised classifiers. This causes two issues: (i) the classifiers
do not capture the type semantics since types are often converted into indices;
(ii) systems developed in this way are limited to predicting within a
pre-defined type set, and often fall short of generalizing to types that are
rarely seen or unseen in training. This work presents LITE, a new approach that
formulates entity typing as a natural language inference (NLI) problem, making
use of (i) the indirect supervision from NLI to infer type information
meaningfully represented as textual hypotheses and alleviate the data scarcity
issue, as well as (ii) a learning-to-rank objective to avoid the pre-defining
of a type set. Experiments show that, with limited training data, LITE obtains
state-of-the-art performance on the UFET task. In addition, LITE demonstrates
its strong generalizability, by not only yielding best results on other
fine-grained entity typing benchmarks, more importantly, a pre-trained LITE
system works well on new data containing unseen types.
- Abstract(参考訳): 超微細エンティティタイピング(UFET)の課題は、文中に言及されるエンティティの適切なタイプを記述する多様で自由な単語やフレーズを予測することである。
このタスクの重要な課題は、大量の型と1タイプあたりのアノテーション付きデータの不足にある。
既存のシステムはタスクをマルチウェイ分類問題として定式化し、直接または遠方の分類器を訓練する。
これは2つの問題を引き起こします
(i)型はしばしばインデックスに変換されるため、分類器は型セマンティクスをキャプチャしない。
(ii) この方法で開発されたシステムは、事前定義された型セット内での予測に限られており、しばしば、トレーニングでめったに見られない、あるいは見えない型に一般化できない。
本研究は,エンティティ型付けを自然言語推論(NLI)問題として定式化するLITEを提案する。
一 テキスト仮説として有意義に表される型情報を推測し、データ不足の問題を緩和するためのNLIからの間接監督
(ii)型集合の前定義を避けるための学習対ランク目標。
実験により、LITEは訓練データに制限があるため、UFETタスクにおける最先端のパフォーマンスが得られることが示された。
さらに、LITEは、他のきめ細かいエンティティ型付けベンチマークで最高の結果を得るだけでなく、事前学習されたLITEシステムは、目に見えない型を含む新しいデータでうまく機能する。
関連論文リスト
- Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - A Fixed-Point Approach to Unified Prompt-Based Counting [51.20608895374113]
本研究の目的は,ボックス,ポイント,テキストなど,さまざまなプロンプト型で示されるオブジェクトの密度マップを生成することができる包括的プロンプトベースのカウントフレームワークを確立することである。
本モデルは,クラスに依存しない顕著なデータセットに優れ,データセット間の適応タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-15T12:05:44Z) - Seed-Guided Fine-Grained Entity Typing in Science and Engineering
Domains [51.02035914828596]
科学・工学分野において,シード誘導型細粒度エンティティタイピングの課題について検討する。
まず、ラベルのないコーパスから各タイプのエンティティを抽出し、弱い監視力を高めるSETypeを提案する。
そして、リッチなエンティティをラベルなしのテキストにマッチさせ、擬似ラベル付きサンプルを取得し、見知らぬ型と見えない型の両方に推論できるテキストエンテリメントモデルを訓練する。
論文 参考訳(メタデータ) (2024-01-23T22:36:03Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
容易に解釈可能な用語でエラーを特徴付けることは、分類器が体系的なエラーを起こす傾向にあるかどうかを洞察する。
正しい予測と誤予測を区別するトークンのパターンを発見することを提案する。
提案手法であるPremiseが実際によく動作することを示す。
論文 参考訳(メタデータ) (2023-11-18T00:24:26Z) - Ontology Enrichment for Effective Fine-grained Entity Typing [45.356694904518626]
きめ細かいエンティティタイピング(FET)は、コンテキスト情報に基づいてエンティティの参照に対して、特定のエンティティタイプをきめ細かいレベルで識別するタスクである。
FETの従来の方法には、時間と費用がかかる広範囲な人的アノテーションが必要である。
提案手法は,コントラストのあるトピックとインスタンスベースの強化トレーニングサンプルを用いたエンテーメントモデルをトレーニングすることにより,その情報を利用する粗大なタイピングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-10-11T18:30:37Z) - Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
一致したクラス先行は、オラクルの上界性能と強く相関していることを示す。
また,NLPタスクに対するプロンプト設定において,一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2023-09-10T10:57:41Z) - OntoType: Ontology-Guided and Pre-Trained Language Model Assisted Fine-Grained Entity Typing [25.516304052884397]
きめ細かいエンティティタイピング(FET)は、コンテキストに敏感できめ細かいセマンティックタイプでエンティティをテキストに割り当てる。
OntoTypeは、粗いものから細いものまで、型オントロジ構造に従い、複数のPLMをアンサンブルすることで、型候補のセットを生成する。
Ontonotes、FIGER、NYTデータセットに関する我々の実験は、我々の手法が最先端のゼロショットの微細なエンティティタイピング方法よりも優れていることを示した。
論文 参考訳(メタデータ) (2023-05-21T00:32:37Z) - Label-Descriptive Patterns and their Application to Characterizing
Classification Errors [31.272875287136426]
最先端のディープラーニング手法は多くのタスクで人間のようなパフォーマンスを達成するが、それでもエラーを犯す。
これらのエラーを容易に解釈可能な言葉で特徴付けることは、モデルが体系的なエラーを起こす傾向にあるかどうかの洞察を与えるだけでなく、モデルを実行し改善する方法を与える。
本稿では,予測の正しさに応じて分割された入力データを簡潔に記述するパターンの小さなセットをマイニングすることにより,任意の分類器に対して,任意の分類を行うことができる手法を提案する。
論文 参考訳(メタデータ) (2021-10-18T19:42:21Z) - Prompt-Learning for Fine-Grained Entity Typing [40.983849729537795]
完全教師付き,少数ショット,ゼロショットシナリオにおける微粒化エンティティタイピングに対するプロンプトラーニングの適用について検討する。
本稿では,エンティティタイプの情報を自動的に要約するために,プロンプトラーニングにおける分布レベルの最適化を行う自己教師型戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T09:39:35Z) - Ultra-Fine Entity Typing with Weak Supervision from a Masked Language
Model [39.031515304057585]
最近、よりリッチで超微細な型セットを使用することで、きめ細かいエンティティタイピングを拡張する取り組みが行われている。
BERT Masked Language Model (MLM) を用いた超微細エンティティタイピングのためのトレーニングデータを得る。
文中の言及が与えられた場合、提案手法はBERTの入力を構築し、参照の文脈依存ハイパーネムを予測し、型ラベルとして使用することができる。
論文 参考訳(メタデータ) (2021-06-08T04:43:28Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
本稿では,人間の読みやすいエンティティ表現を作成し,箱から高パフォーマンスを実現する手法を提案する。
我々の表現は、微粒な実体型に対する後続確率に対応するベクトルである。
特定のドメインに対して,学習に基づく方法で,型セットのサイズを縮小できることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。