論文の概要: Distribution augmentation for low-resource expressive text-to-speech
- arxiv url: http://arxiv.org/abs/2202.06409v1
- Date: Sun, 13 Feb 2022 21:19:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 15:39:41.468242
- Title: Distribution augmentation for low-resource expressive text-to-speech
- Title(参考訳): 低音源表現型音声合成のための分布拡大
- Authors: Mateusz Lajszczak, Animesh Prasad, Arent van Korlaar, Bajibabu
Bollepalli, Antonio Bonafonte, Arnaud Joly, Marco Nicolis, Alexis Moinet,
Thomas Drugman, Trevor Wood, Elena Sokolova
- Abstract要約: 本稿では,TTS(text-to-speech)のための新しいデータ拡張手法を提案する。
追加データを必要とすることなく、新たな(テキスト、オーディオ)トレーニング例を生成することができる。
- 参考スコア(独自算出の注目度): 18.553812159109253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel data augmentation technique for text-to-speech
(TTS), that allows to generate new (text, audio) training examples without
requiring any additional data. Our goal is to increase diversity of text
conditionings available during training. This helps to reduce overfitting,
especially in low-resource settings. Our method relies on substituting text and
audio fragments in a way that preserves syntactical correctness. We take
additional measures to ensure that synthesized speech does not contain
artifacts caused by combining inconsistent audio samples. The perceptual
evaluations show that our method improves speech quality over a number of
datasets, speakers, and TTS architectures. We also demonstrate that it greatly
improves robustness of attention-based TTS models.
- Abstract(参考訳): 本稿では,TTS(text-to-speech)のための新しいデータ拡張手法を提案する。
私たちの目標は、トレーニング中に利用できるテキストコンディショニングの多様性を高めることです。
これは、特に低リソース環境でのオーバーフィッティングを減らすのに役立つ。
本手法は,構文的正確性を保ちながらテキストと音声の断片を置換することに依存する。
我々は, 合成音声が不整合音声サンプルの組み合わせによるアーチファクトを含まないよう, さらなる対策を講じる。
本手法は,多数のデータセット,話者,TSアーキテクチャに対して,音声品質の向上を図っている。
また,注意に基づくttsモデルのロバスト性が大幅に向上することを示す。
関連論文リスト
- Improving Robustness of LLM-based Speech Synthesis by Learning Monotonic Alignment [19.48653924804823]
大規模言語モデル (LLM) に基づくテキスト音声合成システム (TTS) は, 大規模音声データセットの処理や, 新しい話者に対する自然な音声生成において, 顕著な能力を示した。
しかし、LLMベースのTSモデルは、生成した出力が繰り返し単語、欠落した単語、不一致した音声を含むことができるため、堅牢ではない。
エンコーダ・デコーダ・トランスフォーマーモデルを用いてこれらの課題を検証し、与えられたテキストに対する音声トークンの予測訓練において、そのようなモデルにおける特定のクロスアテンションヘッドが暗黙的にテキストと音声アライメントを学習することを確認する。
論文 参考訳(メタデータ) (2024-06-25T22:18:52Z) - VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment [101.2489492032816]
VALL-E Rは、堅牢で効率的なゼロショットテキスト音声合成システムである。
この研究は、失語症に罹患した人々のためのスピーチの作成を含む有意義なプロジェクトに適用される可能性がある。
論文 参考訳(メタデータ) (2024-06-12T04:09:44Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
テキストなし音声合成のための高品質な表現型音声データセットであるExpressoを紹介する。
このデータセットは、26の自発的表現スタイルで描画された読み上げ音声と即興対話の両方を含む。
自己監督型離散エンコーダの自動計測値を用いて再生品質を評価する。
論文 参考訳(メタデータ) (2023-08-10T17:41:19Z) - Controllable Emphasis with zero data for text-to-speech [57.12383531339368]
強調音声を簡易かつ効果的に処理する方法は、強調単語の予測持続時間を増加させることである。
これは自然度を7.3%向上させるスペクトログラム修正手法よりもはるかに優れていることを示し、基準女性のen-US音声に対して、文章中の強調された単語の正しさを40%精度で識別する。
論文 参考訳(メタデータ) (2023-07-13T21:06:23Z) - ContextSpeech: Expressive and Efficient Text-to-Speech for Paragraph
Reading [65.88161811719353]
本研究は、軽量で効果的なテキスト音声合成システムであるContextSpeechを開発する。
まず,グローバルテキストと音声コンテキストを文エンコーディングに組み込むメモリキャッシュ再帰機構を設計する。
我々は,グローバルな文脈拡張の範囲を広げるため,階層的に構造化されたテキストセマンティクスを構築した。
実験の結果,ContextSpeechは段落読解における音質と韻律を競争モデル効率で著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-07-03T06:55:03Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
本稿では,キャプションの音響モダリティの可能性をフル活用することを目的とした音声視覚フレームワークを提案する。
本稿では,音声とビデオ間の情報交換を改善するため,新たなローカル・グローバル融合機構を提案する。
論文 参考訳(メタデータ) (2023-06-21T20:54:52Z) - When Is TTS Augmentation Through a Pivot Language Useful? [26.084140117526488]
我々は,高出力のピボット言語のための訓練されたTSシステムを用いて,ターゲット言語からテキストを実行することによって,合成音声を生成することを提案する。
数千の合成TSテキスト音声ペアを使用し、実際のデータを複製して最適な結果を得る。
これらの発見の応用は、2つの低リソース言語に対してそれぞれ64.5%と45.0%の文字誤り低減率(CERR)を改善する。
論文 参考訳(メタデータ) (2022-07-20T13:33:41Z) - Transfer Learning Framework for Low-Resource Text-to-Speech using a
Large-Scale Unlabeled Speech Corpus [10.158584616360669]
テキスト音声(TTS)モデルのトレーニングには,大規模テキストラベル付き音声コーパスが必要となる。
本稿では、事前学習に大量のラベルなし音声データセットを利用するTSの転送学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T11:26:56Z) - Guided-TTS:Text-to-Speech with Untranscribed Speech [22.548875263927396]
我々は、未転写音声データから音声を生成することを学習する高品質TTSモデルである Guided-TTS を提案する。
音声合成において,無条件DDPMの生成過程を音素分類を用いて導き,メル-スペクトログラムを生成する。
論文 参考訳(メタデータ) (2021-11-23T10:05:05Z) - A study on the efficacy of model pre-training in developing neural
text-to-speech system [55.947807261757056]
本研究の目的は,モデル事前学習がTSシステム性能に肯定的に寄与する理由と方法を明らかにすることである。
トレーニング前のデータを元のサイズの1/8に減らすと,TSシステムは同等の性能が得られることがわかった。
論文 参考訳(メタデータ) (2021-10-08T02:09:28Z) - Synth2Aug: Cross-domain speaker recognition with TTS synthesized speech [8.465993273653554]
話者認識を支援するために,多話者テキスト音声合成システムを用いて音声合成を行う。
我々は、TTS合成音声がクロスドメイン話者認識性能を向上させることをデータセット上で観察する。
また,TTS合成に使用するテキストの異なるタイプの有効性についても検討する。
論文 参考訳(メタデータ) (2020-11-24T00:48:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。