論文の概要: ADeADA: Adaptive Density-aware Active Domain Adaptationfor Semantic
Segmentation
- arxiv url: http://arxiv.org/abs/2202.06484v1
- Date: Mon, 14 Feb 2022 05:17:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 15:43:58.436077
- Title: ADeADA: Adaptive Density-aware Active Domain Adaptationfor Semantic
Segmentation
- Title(参考訳): ADeADA: セマンティックセグメンテーションのための適応密度対応アクティブドメイン適応
- Authors: Tsung-Han Wu, Yi-Syuan Liou, Shao-Ji Yuan, Hsin-Ying Lee, Tung-I Chen,
Winston H. Hsu
- Abstract要約: セマンティックセグメンテーションのための一般的なアクティブドメイン適応フレームワークであるADeADAについて述べる。
対象とするドメインアノテーションが5%未満の場合、我々のメソッドは完全な監視の方法と同等の結果に到達します。
- 参考スコア(独自算出の注目度): 23.813813896293876
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of domain adaptation, a trade-off exists between the model
performance and the number of target domain annotations. Active learning,
maximizing model performance with few informative labeled data, comes in handy
for such a scenario. In this work, we present ADeADA, a general active domain
adaptation framework for semantic segmentation. To adapt the model to the
target domain with minimum queried labels, we propose acquiring labels of the
samples with high probability density in the target domain yet with low
probability density in the source domain, complementary to the existing source
domain labeled data. To further facilitate the label efficiency, we design an
adaptive budget allocation policy, which dynamically balances the labeling
budgets among different categories as well as between density-aware and
uncertainty-based methods. Extensive experiments show that our method
outperforms existing active learning and domain adaptation baselines on two
benchmarks, GTA5 -> Cityscapes and SYNTHIA -> Cityscapes. With less than 5%
target domain annotations, our method reaches comparable results with that of
full supervision.
- Abstract(参考訳): ドメイン適応の分野では、モデルパフォーマンスとターゲットドメインアノテーションの数の間にトレードオフが存在する。
アクティブラーニング(Active Learning)は、情報付きデータの少ないモデルパフォーマンスを最大化することで、このようなシナリオに役立ちます。
本稿では,セマンティックセグメンテーションのための一般的なアクティブドメイン適応フレームワークであるADeADAについて述べる。
最小限のクエリ済みラベルで対象ドメインにモデルを適応させるため,既存のソースドメインのラベル付きデータと相補的に,ターゲットドメインの確率密度が高いがソースドメインの確率密度が低いサンプルのラベルを取得することを提案する。
ラベル効率をさらに高めるために,異なるカテゴリ間のラベリング予算と,密度認識手法と不確実性に基づく手法を動的にバランスさせる適応予算配分ポリシーを設計する。
gta5 -> cityscapes と synthia -> cityscapes の2つのベンチマークにおいて,本手法が既存のアクティブラーニングおよびドメイン適応ベースラインを上回ることを示す。
対象とするドメインアノテーションが5%未満の場合,本手法は全監視対象と同等の結果となる。
関連論文リスト
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
教師なしドメイン適応セグメンテーションは、それらのドメインのラベル付きデータに頼ることなく、ターゲットドメイン上のモデルのセグメンテーション精度を向上させることを目的としている。
ソースドメイン(ラベル付きデータが利用可能な場所)とターゲットドメイン(ラベルなしデータのみが存在する場所)の特徴表現の整合を図る。
論文 参考訳(メタデータ) (2024-07-24T08:53:29Z) - Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
半教師付きドメイン適応(SSDA)は、ソースとターゲットのドメイン分布をブリッジすることを目的としており、少数のターゲットラベルが利用可能である。
既存のSSDAの作業は、ソースドメインとターゲットドメインの両方からラベル情報をフル活用して、ドメイン間の機能アライメントに失敗する。
本稿では,新しいSSDA手法であるIDMNE(Inter-domain Mixup with Neighborhood Expansion)を提案する。
論文 参考訳(メタデータ) (2024-01-21T10:20:46Z) - Divide and Adapt: Active Domain Adaptation via Customized Learning [56.79144758380419]
対象インスタンスを成層化可能な4つのカテゴリに分割する新しいADAフレームワークであるDiaNA(Divide-and-Adapt)を提案する。
不確実性とドメイン性に基づく新しいデータ分割プロトコルにより、DiaNAは最も有利なサンプルを正確に認識することができる。
の精神のおかげで、DiaNAはドメインギャップの大きなバリエーションでデータを処理できる。
論文 参考訳(メタデータ) (2023-07-21T14:37:17Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Adapting Segmentation Networks to New Domains by Disentangling Latent
Representations [14.050836886292869]
ドメイン適応アプローチは、ラベルを持つソースドメインから取得した知識を関連するラベルを持つターゲットドメインに転送する役割を担っている。
本稿では,教師付きトレーニングと比較して適応戦略の相対的有効性を捉えるための新しい性能指標を提案する。
論文 参考訳(メタデータ) (2021-08-06T09:43:07Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
マルチソース非監視ドメイン適応(MSDA)は、複数のラベル付きソースドメインで訓練されたモデルをラベル付きターゲットドメインに適応することを目的とする。
セマンティックセグメンテーションのための協調学習に基づく新しいマルチソースドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-08T12:51:42Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
半教師付き領域適応(SSDA)法は,大規模な画像分類タスクにおいて大きな可能性を示している。
本稿では、ドメイン間およびドメイン内セマンティック情報を効果的に伝達することにより、この問題に対処する新しい効果的な方法を提案する。
ソースコードと事前訓練されたモデルも間もなくリリースされる予定です。
論文 参考訳(メタデータ) (2020-12-04T14:28:19Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。