論文の概要: An Introduction to Neural Data Compression
- arxiv url: http://arxiv.org/abs/2202.06533v1
- Date: Mon, 14 Feb 2022 08:01:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 18:18:12.813110
- Title: An Introduction to Neural Data Compression
- Title(参考訳): ニューラルデータ圧縮入門
- Authors: Yibo Yang, Stephan Mandt, Lucas Theis
- Abstract要約: ニューラル圧縮(Neural compression)は、ニューラルネットワークやその他の機械学習手法をデータ圧縮に適用する手法である。
この導入はエントロピー符号化やレート歪曲理論といった基本的なコーディングトピックをレビューすることによって、必要な背景を埋めることを目指している。
- 参考スコア(独自算出の注目度): 30.62305356319998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural compression is the application of neural networks and other machine
learning methods to data compression. While machine learning deals with many
concepts closely related to compression, entering the field of neural
compression can be difficult due to its reliance on information theory,
perceptual metrics, and other knowledge specific to the field. This
introduction hopes to fill in the necessary background by reviewing basic
coding topics such as entropy coding and rate-distortion theory, related
machine learning ideas such as bits-back coding and perceptual metrics, and
providing a guide through the representative works in the literature so far.
- Abstract(参考訳): ニューラル圧縮は、ニューラルネットワークやその他の機械学習手法をデータ圧縮に適用するものである。
機械学習は圧縮に密接に関連する多くの概念を扱うが、情報理論、知覚メトリクス、およびその分野に特有の他の知識に依存するため、ニューラル圧縮の分野に入ることは困難である。
この紹介では,エントロピー符号化やレート歪曲理論,ビットバックコーディングや知覚的メトリクスといった関連する機械学習のアイデア,これまでの文献における代表的研究のガイドを提供することで,必要な背景を埋めることを目指している。
関連論文リスト
- UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - Dynamic Encoding and Decoding of Information for Split Learning in
Mobile-Edge Computing: Leveraging Information Bottleneck Theory [1.1151919978983582]
Split Learning(スプリットラーニング)は、MLモデルを2つの部分(エンコーダとデコーダ)に分割する、プライバシ保護の分散学習パラダイムである。
モバイルエッジコンピューティングでは、エンコーダがユーザ機器(UE)に、デコーダがエッジネットワークに、分割学習によってネットワーク機能を訓練することができる。
本稿では,送信リソース消費の動的バランスと,共有潜在表現の情報化を両立させるためのフレームワークとトレーニング機構を提案する。
論文 参考訳(メタデータ) (2023-09-06T07:04:37Z) - A Deep Learning-based Compression and Classification Technique for Whole
Slide Histopathology Images [0.31498833540989407]
我々は、ニューラルネットワークのアンサンブルを構築し、圧縮オートエンコーダを教師付き方式で、入力されたヒストロジー画像のより密度が高くより意味のある表現を維持することができる。
転送学習に基づく分類器を用いて圧縮画像を検証し、有望な精度と分類性能を示すことを示す。
論文 参考訳(メタデータ) (2023-05-11T22:20:05Z) - Learning with Capsules: A Survey [73.31150426300198]
カプセルネットワークは、オブジェクト中心の表現を学習するための畳み込みニューラルネットワーク(CNN)に代わるアプローチとして提案された。
CNNとは異なり、カプセルネットワークは部分的に階層的な関係を明示的にモデル化するように設計されている。
論文 参考訳(メタデータ) (2022-06-06T15:05:36Z) - Information Flow in Deep Neural Networks [0.6922389632860545]
ディープニューラルネットワークの動作や構造に関する包括的な理論的理解は存在しない。
深層ネットワークはしばしば、不明確な解釈と信頼性を持つブラックボックスと見なされる。
この研究は、情報理論の原理と技法をディープラーニングモデルに適用し、理論的理解を高め、より良いアルゴリズムを設計することを目的としている。
論文 参考訳(メタデータ) (2022-02-10T23:32:26Z) - COIN++: Data Agnostic Neural Compression [55.27113889737545]
COIN++は、幅広いデータモダリティをシームレスに扱うニューラルネットワーク圧縮フレームワークである。
様々なデータモダリティを圧縮することで,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-01-30T20:12:04Z) - On Effects of Compression with Hyperdimensional Computing in Distributed
Randomized Neural Networks [6.25118865553438]
ランダム化ニューラルネットワークと超次元計算に基づく分散分類モデルを提案する。
本研究では,従来の圧縮アルゴリズムや次元減少,量子化技術と比較し,より柔軟な圧縮手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T22:02:40Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
ディープフィードバックコントロール(Deep Feedback Control, DFC)は、フィードバックコントローラを使用して、望ましい出力ターゲットにマッチするディープニューラルネットワークを駆動し、クレジット割り当てに制御信号を使用する新しい学習方法である。
学習規則は空間と時間において完全に局所的であり、幅広い接続パターンに対するガウス・ニュートンの最適化を近似する。
さらに,DFCと皮質錐体ニューロンのマルチコンパートメントモデルと,局所的な電圧依存性のシナプス可塑性規則を関連づける。
論文 参考訳(メタデータ) (2021-06-15T05:30:17Z) - Compression phase is not necessary for generalization in representation
learning [0.0]
訓練データから抽出した入出力関係を一般化するために圧縮位相が必要かどうかは議論の余地がある。
各種オートエンコーダを用いて実験を行い,情報処理フェーズの評価を行った。
表現学習における一般化には圧縮相は不要であると結論づける。
論文 参考訳(メタデータ) (2021-02-15T09:02:45Z) - Unfolding Neural Networks for Compressive Multichannel Blind
Deconvolution [71.29848468762789]
圧縮性多チャネルブラインドデコンボリューション問題に対する学習構造付き展開型ニューラルネットワークを提案する。
この問題では、各チャネルの測定は共通のソース信号とスパースフィルタの畳み込みとして与えられる。
提案手法は,従来の圧縮型マルチチャネルブラインドデコンボリューション法よりも,スパースフィルタの精度と高速化の点で優れていることを示す。
論文 参考訳(メタデータ) (2020-10-22T02:34:33Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。