論文の概要: Visual Acoustic Matching
- arxiv url: http://arxiv.org/abs/2202.06875v1
- Date: Mon, 14 Feb 2022 17:05:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 18:06:36.728756
- Title: Visual Acoustic Matching
- Title(参考訳): 視覚音響マッチング
- Authors: Changan Chen, Ruohan Gao, Paul Calamia, Kristen Grauman
- Abstract要約: 本稿では,音声クリップがターゲット環境に録音されたような音に変換される視覚的音響マッチングタスクを提案する。
対象の環境の画像とソースオーディオの波形が与えられた場合、その視覚的幾何学や材料によって示唆されるように、ターゲットの部屋の音響と一致するように、オーディオを再合成することが目的である。
- 参考スコア(独自算出の注目度): 92.91522122739845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the visual acoustic matching task, in which an audio clip is
transformed to sound like it was recorded in a target environment. Given an
image of the target environment and a waveform for the source audio, the goal
is to re-synthesize the audio to match the target room acoustics as suggested
by its visible geometry and materials. To address this novel task, we propose a
cross-modal transformer model that uses audio-visual attention to inject visual
properties into the audio and generate realistic audio output. In addition, we
devise a self-supervised training objective that can learn acoustic matching
from in-the-wild Web videos, despite their lack of acoustically mismatched
audio. We demonstrate that our approach successfully translates human speech to
a variety of real-world environments depicted in images, outperforming both
traditional acoustic matching and more heavily supervised baselines.
- Abstract(参考訳): 本稿では,音声クリップがターゲット環境に録音されたような音に変換される視覚的音響マッチングタスクを提案する。
対象の環境の画像とソースオーディオの波形が与えられた場合、目標は、その可視的な形状と材料から示唆されるように、対象の室内音響に合致するように音声を再合成することである。
この課題に対処するために,音声に視覚的特徴を注入し,現実的な音声出力を生成するためのモーダル変換器モデルを提案する。
また,音声の音響的ミスマッチが欠如しているにもかかわらず,webビデオから音響マッチングを学習できる自己教師付き学習目標を考案する。
提案手法は,人間の発話を画像に表現された様々な実環境に変換し,従来の音響マッチングと教師付きベースラインの両方に優れることを示す。
関連論文リスト
- AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
本稿では,新しいオーディオ・ビジュアル・デバーベレーション・フレームワークであるAdVerbを紹介する。
残響音に加えて視覚的手がかりを用いてクリーンオーディオを推定する。
論文 参考訳(メタデータ) (2023-08-23T18:20:59Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
音響マッチングは、ターゲットの音響環境に録音されたかのように、音声クリップを再合成することを目的としている。
そこで本研究では,対象のシーン画像と音声のみを含む,視覚的音響マッチングのための自己教師型アプローチを提案する。
提案手法は,条件付きGANフレームワークと新しいメトリクスを用いて,室内音響をアンタングル化し,音をターゲット環境に再合成する方法を共同で学習する。
論文 参考訳(メタデータ) (2023-07-27T17:59:59Z) - Speech inpainting: Context-based speech synthesis guided by video [29.233167442719676]
本稿では,音声セグメントにおける音声合成の課題である音声-視覚音声の塗装問題に焦点をあてる。
本稿では,視覚的手がかりを生かし,劣化した音声の内容に関する情報を提供する音声-視覚変換器を用いた深層学習モデルを提案する。
また,音声認識のための大規模音声・視覚変換器であるAV-HuBERTで抽出した視覚的特徴が,音声合成にどのように適しているかを示す。
論文 参考訳(メタデータ) (2023-06-01T09:40:47Z) - AV-NeRF: Learning Neural Fields for Real-World Audio-Visual Scene
Synthesis [61.07542274267568]
我々は,マルチモーダル学習のための,現実の映像シーン合成という新たな課題と,その一級のNeRFベースのアプローチについて検討する。
音声伝搬の事前知識をNeRFに統合する音響認識型音声生成モジュールを提案する。
本稿では,音源に対する視野方向を表す座標変換モジュールを提案する。
論文 参考訳(メタデータ) (2023-02-04T04:17:19Z) - Learning Audio-Visual Dereverberation [87.52880019747435]
環境中の表面や物体を反射する音声からの残響は、人間の知覚の質を低下させるだけでなく、自動音声認識の精度にも深刻な影響を及ぼす。
我々の考えは、音声・視覚的観察から音声を除去することである。
そこで我々は,観測音と映像シーンの両方に基づいて残響を除去することを学ぶエンドツーエンドアプローチである,視覚インフォームド・デバーベレーション・オブ・オーディオ(VIDA)を紹介した。
論文 参考訳(メタデータ) (2021-06-14T20:01:24Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
生音声波形から自己教師付き音声表現を学習する手法を提案する。
音声のみの自己スーパービジョン(情報的音響属性の予測)と視覚的自己スーパービジョン(音声から発話顔を生成する)を組み合わせることで生音声エンコーダを訓練する。
本研究は,音声表現学習におけるマルチモーダル・セルフ・スーパービジョンの可能性を示すものである。
論文 参考訳(メタデータ) (2020-07-08T14:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。