Principal Manifold Flows
- URL: http://arxiv.org/abs/2202.07037v1
- Date: Mon, 14 Feb 2022 20:58:15 GMT
- Title: Principal Manifold Flows
- Authors: Edmond Cunningham, Adam Cobb and Susmit Jha
- Abstract summary: We characterize the geometric structure of normalizing flows and understand the relationship between latent variables and samples using contours.
We introduce a novel class of normalizing flows, called principal manifold flows (PF), whose contours are its principal manifold.
We show that PFs can perform density estimation on data that lie on a manifold with variable dimensionality, which is not possible with existing normalizing flows.
- Score: 6.628230604022489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows map an independent set of latent variables to their samples
using a bijective transformation. Despite the exact correspondence between
samples and latent variables, their high level relationship is not well
understood. In this paper we characterize the geometric structure of flows
using principal manifolds and understand the relationship between latent
variables and samples using contours. We introduce a novel class of normalizing
flows, called principal manifold flows (PF), whose contours are its principal
manifolds, and a variant for injective flows (iPF) that is more efficient to
train than regular injective flows. PFs can be constructed using any flow
architecture, are trained with a regularized maximum likelihood objective and
can perform density estimation on all of their principal manifolds. In our
experiments we show that PFs and iPFs are able to learn the principal manifolds
over a variety of datasets. Additionally, we show that PFs can perform density
estimation on data that lie on a manifold with variable dimensionality, which
is not possible with existing normalizing flows.
Related papers
- Canonical normalizing flows for manifold learning [14.377143992248222]
We propose a canonical manifold learning flow method, where a novel objective enforces the transformation matrix to have few prominent and non-degenerate basis functions.
Canonical manifold flow yields a more efficient use of the latent space, automatically generating fewer prominent and distinct dimensions to represent data.
arXiv Detail & Related papers (2023-10-19T13:48:05Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
We show that convolutional filtering on a sampled manifold converges to continuous manifold filtering.
Our findings are further demonstrated empirically on a problem of navigation control.
arXiv Detail & Related papers (2022-11-20T19:09:50Z) - Understanding the Covariance Structure of Convolutional Filters [86.0964031294896]
Recent ViT-inspired convolutional networks such as ConvMixer and ConvNeXt use large-kernel depthwise convolutions with notable structure.
We first observe that such learned filters have highly-structured covariance matrices, and we find that covariances calculated from small networks may be used to effectively initialize a variety of larger networks.
arXiv Detail & Related papers (2022-10-07T15:59:13Z) - Matching Normalizing Flows and Probability Paths on Manifolds [57.95251557443005]
Continuous Normalizing Flows (CNFs) are generative models that transform a prior distribution to a model distribution by solving an ordinary differential equation (ODE)
We propose to train CNFs by minimizing probability path divergence (PPD), a novel family of divergences between the probability density path generated by the CNF and a target probability density path.
We show that CNFs learned by minimizing PPD achieve state-of-the-art results in likelihoods and sample quality on existing low-dimensional manifold benchmarks.
arXiv Detail & Related papers (2022-07-11T08:50:19Z) - Joint Manifold Learning and Density Estimation Using Normalizing Flows [4.939777212813711]
We introduce two approaches, namely per-pixel penalized log-likelihood and hierarchical training, to answer the question.
We propose a single-step method for joint manifold learning and density estimation by disentangling the transformed space.
Results validate the superiority of the proposed methods in simultaneous manifold learning and density estimation.
arXiv Detail & Related papers (2022-06-07T13:35:14Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - Equivariant Discrete Normalizing Flows [10.867162810786361]
We focus on building equivariant normalizing flows using discrete layers.
We introduce two new equivariant flows: $G$-coupling Flows and $G$-Residual Flows.
Our construction of $G$-Residual Flows are also universal, in the sense that we prove an $G$-equivariant diffeomorphism can be exactly mapped by a $G$-residual flow.
arXiv Detail & Related papers (2021-10-16T20:16:00Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) is a new class of generative models within the family of continuous normalizing flows (CNF)
MF does not require invoking or backpropagating through an ODE solver during training.
We demonstrate for the first time the use of flow models for sampling from general curved surfaces.
arXiv Detail & Related papers (2021-08-18T09:00:24Z) - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [78.77808270452974]
SurVAE Flows is a modular framework for composable transformations that encompasses VAEs and normalizing flows.
We show that several recently proposed methods, including dequantization and augmented normalizing flows, can be expressed as SurVAE Flows.
arXiv Detail & Related papers (2020-07-06T13:13:22Z) - Normalizing Flows Across Dimensions [10.21537170623373]
We introduce noisy injective flows (NIF), a generalization of normalizing flows that can go across dimensions.
NIF explicitly map the latent space to a learnable manifold in a high-dimensional data space using injective transformations.
Empirically, we demonstrate that a simple application of our method to existing flow architectures can significantly improve sample quality and yield separable data embeddings.
arXiv Detail & Related papers (2020-06-23T14:47:18Z) - Flows for simultaneous manifold learning and density estimation [12.451050883955071]
manifold-learning flows (M-flows) represent datasets with a manifold structure more faithfully.
M-flows learn the data manifold and allow for better inference than standard flows in the ambient data space.
arXiv Detail & Related papers (2020-03-31T02:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.