Rethinking Network Design and Local Geometry in Point Cloud: A Simple
Residual MLP Framework
- URL: http://arxiv.org/abs/2202.07123v1
- Date: Tue, 15 Feb 2022 01:39:07 GMT
- Title: Rethinking Network Design and Local Geometry in Point Cloud: A Simple
Residual MLP Framework
- Authors: Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, Yun Fu
- Abstract summary: We introduce a pure residual network, called PointMLP, which integrates no sophisticated local geometrical extractors but still performs very competitively.
On the real-world ScanObjectNN dataset, our method even surpasses the prior best method by 3.3% accuracy.
Compared to most recent CurveNet, PointMLP trains 2x faster, tests 7x faster, and is more accurate on ModelNet40 benchmark.
- Score: 55.40001810884942
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Point cloud analysis is challenging due to irregularity and unordered data
structure. To capture the 3D geometries, prior works mainly rely on exploring
sophisticated local geometric extractors using convolution, graph, or attention
mechanisms. These methods, however, incur unfavorable latency during inference,
and the performance saturates over the past few years. In this paper, we
present a novel perspective on this task. We notice that detailed local
geometrical information probably is not the key to point cloud analysis -- we
introduce a pure residual MLP network, called PointMLP, which integrates no
sophisticated local geometrical extractors but still performs very
competitively. Equipped with a proposed lightweight geometric affine module,
PointMLP delivers the new state-of-the-art on multiple datasets. On the
real-world ScanObjectNN dataset, our method even surpasses the prior best
method by 3.3% accuracy. We emphasize that PointMLP achieves this strong
performance without any sophisticated operations, hence leading to a superior
inference speed. Compared to most recent CurveNet, PointMLP trains 2x faster,
tests 7x faster, and is more accurate on ModelNet40 benchmark. We hope our
PointMLP may help the community towards a better understanding of point cloud
analysis. The code is available at https://github.com/ma-xu/pointMLP-pytorch.
Related papers
- PointGL: A Simple Global-Local Framework for Efficient Point Cloud
Analysis [19.163081544030547]
We introduce a novel, uncomplicated yet potent architecture known as PointGL to facilitate efficient point cloud analysis.
The fusion of one-time point embedding and parameter-free graph pooling contributes to PointGL's defining attributes of minimized model complexity and heightened efficiency.
Our PointGL attains state-of-the-art accuracy on the ScanObjectNN dataset while exhibiting a runtime that is more than 5 times faster and utilizing only approximately 4% of the FLOPs and 30% of the parameters compared to the recent PointMLP model.
arXiv Detail & Related papers (2024-01-22T02:05:33Z) - Point Deformable Network with Enhanced Normal Embedding for Point Cloud
Analysis [59.12922158979068]
Recently-based methods have shown strong performance in point cloud analysis.
Simple architectures are able to learn geometric features in local point groups yet fail to model long-range dependencies directly.
We propose Point Deformable Network (PDNet) to capture long-range relations with strong representation ability.
arXiv Detail & Related papers (2023-12-20T14:52:07Z) - GPr-Net: Geometric Prototypical Network for Point Cloud Few-Shot
Learning [2.4366811507669115]
GPr-Net is a lightweight and computationally efficient geometric network that captures the prototypical topology of point clouds.
We show that GPr-Net outperforms state-of-the-art methods in few-shot learning on point clouds.
arXiv Detail & Related papers (2023-04-12T17:32:18Z) - Stratified Transformer for 3D Point Cloud Segmentation [89.9698499437732]
Stratified Transformer is able to capture long-range contexts and demonstrates strong generalization ability and high performance.
To combat the challenges posed by irregular point arrangements, we propose first-layer point embedding to aggregate local information.
Experiments demonstrate the effectiveness and superiority of our method on S3DIS, ScanNetv2 and ShapeNetPart datasets.
arXiv Detail & Related papers (2022-03-28T05:35:16Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - Exploiting Local Geometry for Feature and Graph Construction for Better
3D Point Cloud Processing with Graph Neural Networks [22.936590869919865]
We propose improvements in point representations and local neighborhood graph construction within the general framework of graph neural networks.
We show that the proposed network achieves faster training convergence, i.e. 40% less epochs for classification.
arXiv Detail & Related papers (2021-03-28T21:34:59Z) - Robust Kernel-based Feature Representation for 3D Point Cloud Analysis
via Circular Graph Convolutional Network [2.42919716430661]
We present a new local feature description method that is robust to rotation, density, and scale variations.
To improve representations of the local descriptors, we propose a global aggregation method.
Our method shows superior performances when compared to the state-of-the-art methods.
arXiv Detail & Related papers (2020-12-22T18:02:57Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.