Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling
- URL: http://arxiv.org/abs/2107.02389v1
- Date: Tue, 6 Jul 2021 05:08:34 GMT
- Title: Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling
- Authors: Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua
Wang, Niki Trigoni and Andrew Markham
- Abstract summary: We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
- Score: 52.464516118826765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study the problem of efficient semantic segmentation of large-scale 3D
point clouds. By relying on expensive sampling techniques or computationally
heavy pre/post-processing steps, most existing approaches are only able to be
trained and operate over small-scale point clouds. In this paper, we introduce
RandLA-Net, an efficient and lightweight neural architecture to directly infer
per-point semantics for large-scale point clouds. The key to our approach is to
use random point sampling instead of more complex point selection approaches.
Although remarkably computation and memory efficient, random sampling can
discard key features by chance. To overcome this, we introduce a novel local
feature aggregation module to progressively increase the receptive field for
each 3D point, thereby effectively preserving geometric details. Comparative
experiments show that our RandLA-Net can process 1 million points in a single
pass up to 200x faster than existing approaches. Moreover, extensive
experiments on five large-scale point cloud datasets, including Semantic3D,
SemanticKITTI, Toronto3D, NPM3D and S3DIS, demonstrate the state-of-the-art
semantic segmentation performance of our RandLA-Net.
Related papers
- Multi-modality Affinity Inference for Weakly Supervised 3D Semantic
Segmentation [47.81638388980828]
We propose a simple yet effective scene-level weakly supervised point cloud segmentation method with a newly introduced multi-modality point affinity inference module.
Our method outperforms the state-of-the-art by 4% to 6% mIoU on the ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2023-12-27T14:01:35Z) - PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis [28.54939134635978]
PointeNet is a network designed specifically for point cloud analysis.
Our method demonstrates flexibility by seamlessly integrating with a classification/segmentation head or embedding into off-the-shelf 3D object detection networks.
Experiments on object-level datasets, including ModelNet40, ScanObjectNN, ShapeNet KITTI, and the scene-level dataset KITTI, demonstrate the superior performance of PointeNet over state-of-the-art methods in point cloud analysis.
arXiv Detail & Related papers (2023-12-20T03:34:48Z) - Dynamic Clustering Transformer Network for Point Cloud Segmentation [23.149220817575195]
We propose a novel 3D point cloud representation network, called Dynamic Clustering Transformer Network (DCTNet)
It has an encoder-decoder architecture, allowing for both local and global feature learning.
Our method was evaluated on an object-based dataset (ShapeNet), an urban navigation dataset (Toronto-3D), and a multispectral LiDAR dataset.
arXiv Detail & Related papers (2023-05-30T01:11:05Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Stratified Transformer for 3D Point Cloud Segmentation [89.9698499437732]
Stratified Transformer is able to capture long-range contexts and demonstrates strong generalization ability and high performance.
To combat the challenges posed by irregular point arrangements, we propose first-layer point embedding to aggregate local information.
Experiments demonstrate the effectiveness and superiority of our method on S3DIS, ScanNetv2 and ShapeNetPart datasets.
arXiv Detail & Related papers (2022-03-28T05:35:16Z) - MVP-Net: Multiple View Pointwise Semantic Segmentation of Large-Scale
Point Clouds [13.260488842875649]
In this paper, we propose an end-to-end neural architecture, Multiple View Pointwise Net, MVP-Net, to efficiently infer large-scale outdoor point cloud without KNN or complex pre/postprocessing.
Numerical experiments show that the proposed MVP-Net is 11 times faster than the most efficient pointwise semantic segmentation method RandLA-Net.
arXiv Detail & Related papers (2022-01-30T09:43:00Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - Segment as Points for Efficient Online Multi-Object Tracking and
Segmentation [66.03023110058464]
We propose a highly effective method for learning instance embeddings based on segments by converting the compact image representation to un-ordered 2D point cloud representation.
Our method generates a new tracking-by-points paradigm where discriminative instance embeddings are learned from randomly selected points rather than images.
The resulting online MOTS framework, named PointTrack, surpasses all the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2020-07-03T08:29:35Z) - 3DSSD: Point-based 3D Single Stage Object Detector [61.67928229961813]
We present a point-based 3D single stage object detector, named 3DSSD, achieving a good balance between accuracy and efficiency.
Our method outperforms all state-of-the-art voxel-based single stage methods by a large margin, and has comparable performance to two stage point-based methods as well.
arXiv Detail & Related papers (2020-02-24T12:01:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.