Bayesian Optimisation for Active Monitoring of Air Pollution
- URL: http://arxiv.org/abs/2202.07595v2
- Date: Fri, 19 Apr 2024 08:12:50 GMT
- Title: Bayesian Optimisation for Active Monitoring of Air Pollution
- Authors: Sigrid Passano Hellan, Christopher G. Lucas, Nigel H. Goddard,
- Abstract summary: Air pollution is one of the leading causes of mortality globally, resulting in millions of deaths each year.
New low-cost sensors can be deployed in greater numbers and in more varied locations, motivating the problem of efficient automated placement.
Previous work suggests Bayesian optimisation is an appropriate method, but only considered a satellite data set, with data aggregated over all altitudes.
We improve on those results using hierarchical models and evaluate our models on urban pollution data in London to show that Bayesian optimisation can be successfully applied to the problem.
- Score: 5.199765487172328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air pollution is one of the leading causes of mortality globally, resulting in millions of deaths each year. Efficient monitoring is important to measure exposure and enforce legal limits. New low-cost sensors can be deployed in greater numbers and in more varied locations, motivating the problem of efficient automated placement. Previous work suggests Bayesian optimisation is an appropriate method, but only considered a satellite data set, with data aggregated over all altitudes. It is ground-level pollution, that humans breathe, which matters most. We improve on those results using hierarchical models and evaluate our models on urban pollution data in London to show that Bayesian optimisation can be successfully applied to the problem.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Gaussian Processes for Monitoring Air-Quality in Kampala [3.173497841606415]
We investigate the use of Gaussian Processes for nowcasting the current air-pollution in places where there are no sensors and forecasting the air-pollution in the future at the sensor locations.
We focus on the city of Kampala in Uganda, using data from AirQo's network of sensors.
arXiv Detail & Related papers (2023-11-28T09:25:23Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
Methane is one of the most potent greenhouse gases.
Current methane emission monitoring techniques rely on approximate emission factors or self-reporting.
Deep learning methods can be leveraged to automatize the detection of methane leaks in Sentinel-2 satellite multispectral data.
arXiv Detail & Related papers (2023-08-21T19:36:50Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Estimation of Air Pollution with Remote Sensing Data: Revealing
Greenhouse Gas Emissions from Space [1.9659095632676094]
Existing models for surface-level air pollution rely on extensive land-use datasets which are often locally restricted and temporally static.
This work proposes a deep learning approach for the prediction of ambient air pollution that only relies on remote sensing data that is globally available and frequently updated.
arXiv Detail & Related papers (2021-08-31T14:58:04Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Optimising Placement of Pollution Sensors in Windy Environments [0.696125353550498]
Air pollution is one of the most important causes of mortality in the world.
Bizarre optimisation has proven useful in choosing sensor locations, but relies on kernel functions that neglect the statistical structure of air pollution.
We describe two new wind-informed kernels and investigate their advantage for the task of actively learning locations of maximum pollution.
arXiv Detail & Related papers (2020-12-19T20:16:49Z) - Conditional Generative Adversarial Networks to Model Urban Outdoor Air
Pollution [0.8122270502556374]
We propose to train models able to generate synthetic nitrogen dioxide daily time series according to a given classification.
The proposed approach is able to generate accurate and diverse pollution daily time series, while requiring reduced computational time.
arXiv Detail & Related papers (2020-10-05T18:01:10Z) - HazeDose: Design and Analysis of a Personal Air Pollution Inhaled Dose
Estimation System using Wearable Sensors [6.284628903370058]
We extend the paradigm to HazeDose system, which can personalize the individuals' air pollution exposure.
Users can visualize their personalized air pollution exposure information via a mobile application.
One algorithm is also introduced to balance the execution time and dosage reduction for alternative routes scenarios.
arXiv Detail & Related papers (2020-05-28T02:35:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.