論文の概要: Low Latency Real-Time Seizure Detection Using Transfer Deep Learning
- arxiv url: http://arxiv.org/abs/2202.07796v1
- Date: Wed, 16 Feb 2022 00:03:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 02:55:28.555633
- Title: Low Latency Real-Time Seizure Detection Using Transfer Deep Learning
- Title(参考訳): 転送深層学習を用いた低レイテンシリアルタイムシーズーア検出
- Authors: Vahid Khalkhali, Nabila Shawki, Vinit Shah, Meysam Golmohammadi, Iyad
Obeid, Joseph Picone
- Abstract要約: スカルプ脳波(EEG)信号は本質的に低信号-雑音比を有する。
ディープラーニングを用いた発作検出における最も一般的なアプローチは、この情報を共同でモデル化したり、信号に複数のパスを必要とすることはない。
本稿では,マルチチャネル信号をグレースケール画像に変換すると同時に,転送学習を用いて高い性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scalp electroencephalogram (EEG) signals inherently have a low
signal-to-noise ratio due to the way the signal is electrically transduced.
Temporal and spatial information must be exploited to achieve accurate
detection of seizure events. Most popular approaches to seizure detection using
deep learning do not jointly model this information or require multiple passes
over the signal, which makes the systems inherently non-causal. In this paper,
we exploit both simultaneously by converting the multichannel signal to a
grayscale image and using transfer learning to achieve high performance. The
proposed system is trained end-to-end with only very simple pre- and
postprocessing operations which are computationally lightweight and have low
latency, making them conducive to clinical applications that require real-time
processing. We have achieved a performance of 42.05% sensitivity with 5.78
false alarms per 24 hours on the development dataset of v1.5.2 of the Temple
University Hospital Seizure Detection Corpus. On a single-core CPU operating at
1.7 GHz, the system runs faster than real-time (0.58 xRT), uses 16 Gbytes of
memory, and has a latency of 300 msec.
- Abstract(参考訳): スカルプ脳波(EEG)信号は、信号が電気的に伝達される方法によって、本質的に低信号対雑音比を持つ。
発作の正確な検出を達成するためには、時間的および空間的な情報を活用する必要がある。
ディープラーニングを用いた発作検出における最も一般的なアプローチは、この情報を共同でモデル化したり、信号に複数のパスを必要とすることはない。
本稿では,マルチチャネル信号をグレースケール画像に変換すると同時に,転送学習を用いて高い性能を実現する。
提案手法は, 計算処理が軽量で遅延が少ない非常に単純な前処理および後処理操作のみを用いて, エンドツーエンドで訓練され, リアルタイム処理を必要とする臨床応用に寄与する。
テンプル大学病院発作検出コーパスv1.5.2の開発データセットにおいて,24時間に5.78件の誤報が発生し,42.05%の感度が得られた。
1.7GHzで動作するシングルコアCPUでは、システムはリアルタイム(0.58 xRT)よりも高速に動作し、16GBのメモリを使用し、レイテンシは300msecである。
関連論文リスト
- Real-time Sub-milliwatt Epilepsy Detection Implemented on a Spiking Neural Network Edge Inference Processor [5.021433741823472]
本研究では、スパイキングニューラルネットワーク(SNN)を用いてててんかん発作の経時的および経時的周期を検出することを目的とする。
提案手法は,体間期間の分類において,93.3%,92.9%の高い試験精度を有する。
我々の研究は、発作検出のための新しいソリューションを提供しており、将来的にはポータブルデバイスやウェアラブルデバイスで広く使用されることが期待されている。
論文 参考訳(メタデータ) (2024-10-22T01:55:02Z) - Time Scale Network: A Shallow Neural Network For Time Series Data [18.46091267922322]
時系列データは、しばしば複数の時間スケールで情報で構成されている。
この情報を捉えるためのディープラーニング戦略は存在するが、ネットワークを大きくし、より多くのデータを必要とし、計算を要求されやすく、解釈が難しいものが多い。
本稿では,離散ウェーブレット変換における翻訳と拡張シーケンスと,従来の畳み込みニューラルネットワークとバックプロパゲーションを組み合わせた,最小かつ計算効率のタイムスケールネットワークを提案する。
論文 参考訳(メタデータ) (2023-11-10T16:39:55Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - Energy-Efficient Tree-Based EEG Artifact Detection [17.085570466000906]
てんかんモニタリングでは、脳波アーチファクトは振幅と周波数の両方で形態学的に類似しているため、発作と誤認されることが多い。
本研究では, 並列超低消費電力(PULP)組み込みプラットフォーム上で, 最小数のEEGチャネルに基づくアーティファクト検出アルゴリズムの実装について述べる。
論文 参考訳(メタデータ) (2022-04-19T12:57:26Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Automatic non-invasive Cough Detection based on Accelerometer and Audio
Signals [6.004134549265193]
本稿では,加速度計と音声信号の両方に基づいて,自動的非侵襲的コークス検出手法を提案する。
加速度信号は、その統合加速度計を使用して、患者のベッドにしっかりと取り付けられたスマートフォンによって捕捉される。
結核クリニックの成人男性14名を対象に, 約6000頭, 68000頭, 約6000頭, 約68000頭について, 同時捕捉加速度と音声信号を含む手動注釈データセットを作成した。
論文 参考訳(メタデータ) (2021-08-31T22:44:56Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
本稿では,重力波検出器の時系列ひずみデータを用いたニューラルネットワークに基づく機械学習アルゴリズムを提案する。
信号対雑音比が25未満の信号に対する感度は6因子改善した。
保守的な推定は、我々のアルゴリズムが信号の到着からアラート発生までの平均10.2秒の遅延を発生させることを示している。
論文 参考訳(メタデータ) (2020-06-02T10:20:11Z) - Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian
Detection [99.94079901071163]
本稿では、ダイナミックビジョンセンサ(DVS)を用いた歩行者検出のための新しいエンドツーエンドシステムを提案する。
我々は、複数のセンサがローカル処理ユニットにデータを送信し、検出アルゴリズムを実行するアプリケーションをターゲットにしている。
我々の検出器は450ミリ秒毎に検出を行うことができ、総合的なテストF1スコアは83%である。
論文 参考訳(メタデータ) (2020-04-03T17:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。