論文の概要: Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time
Series
- arxiv url: http://arxiv.org/abs/2202.07857v1
- Date: Wed, 16 Feb 2022 04:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 14:27:46.879644
- Title: Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time
Series
- Title(参考訳): 複数時系列の異常検出のためのグラフ強化正規化流れ
- Authors: Enyan Dai, Jie Chen
- Abstract要約: 異常検出は、幅広い種類のデータに対して広く研究されているタスクである。
本稿では,異常検出のためのグラフ拡張正規化フロー手法を提案する。
実世界のデータセットで実験を行い、GANFの有効性を実証する。
- 参考スコア(独自算出の注目度): 12.745860899424532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is a widely studied task for a broad variety of data types;
among them, multiple time series appear frequently in applications, including
for example, power grids and traffic networks. Detecting anomalies for multiple
time series, however, is a challenging subject, owing to the intricate
interdependencies among the constituent series. We hypothesize that anomalies
occur in low density regions of a distribution and explore the use of
normalizing flows for unsupervised anomaly detection, because of their superior
quality in density estimation. Moreover, we propose a novel flow model by
imposing a Bayesian network among constituent series. A Bayesian network is a
directed acyclic graph (DAG) that models causal relationships; it factorizes
the joint probability of the series into the product of easy-to-evaluate
conditional probabilities. We call such a graph-augmented normalizing flow
approach GANF and propose joint estimation of the DAG with flow parameters. We
conduct extensive experiments on real-world datasets and demonstrate the
effectiveness of GANF for density estimation, anomaly detection, and
identification of time series distribution drift.
- Abstract(参考訳): 異常検出(anomaly detection)は、さまざまなデータタイプに対して広く研究されているタスクであり、電力グリッドやトラヒックネットワークなど、アプリケーションで複数の時系列が頻繁に現れる。
しかし、複数の時系列の異常を検出することは、構成系列間の複雑な相互依存性のため、難しい課題である。
分布の低密度領域に異常が発生することを仮定し,非教師なし異常検出における正規化流の利用を考察する。
さらに,構成系列間のベイズネットワークを具体化して,新しい流れモデルを提案する。
ベイズネットワーク(英: Bayesian network)は、因果関係をモデル化する有向非巡回グラフ(DAG)である。
このようなグラフを正規化フローアプローチganfと呼び,dagとフローパラメータの同時推定を提案する。
我々は,実世界のデータセットを広範囲に実験し,ganfの密度推定,異常検出,時系列分布ドリフトの同定に有効であることを示す。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Entropy Causal Graphs for Multivariate Time Series Anomaly Detection [7.402342914903391]
本研究では,多変量時系列異常検出のためのエントロピー因果グラフであるCGADを提案する。
CGADは転送エントロピーを利用して時系列データ間の因果関係を明らかにするグラフ構造を構築する。
CGADは、15%の平均的な改善で、実世界のデータセット上で最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-12-15T01:35:00Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
動的時系列間グラフのリストに基づく時系列異常検出フレームワークDyGraphADを提案する。
中心となる考え方は、シリーズ間関係とシリーズ間時間パターンの正常状態から異常状態へのずれに基づいて異常を検出することである。
実世界のデータセットに関する数値実験により,DyGraphADはベースライン異常検出手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-04T01:27:01Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
MTSのためのヘテロジニアス特徴ネットワーク(HFN)に基づく,新しい半教師付き異常検出フレームワークを提案する。
まず、センサ埋め込みによって生成された埋め込み類似性グラフと、センサ値によって生成された特徴値類似性グラフを組み合わせて、時系列不均一グラフを構築する。
このアプローチは、ヘテロジニアスグラフ構造学習(HGSL)と表現学習の最先端技術を融合させる。
論文 参考訳(メタデータ) (2022-11-01T05:01:34Z) - Detecting Multivariate Time Series Anomalies with Zero Known Label [17.930211011723447]
MTGFlowは多変量時系列異常検出のための教師なし異常検出手法である。
エンティティ間の複雑な相互依存性と各エンティティ固有の特性は、密度推定に重大な課題を生じさせる。
7つのベースラインを持つ5つの公開データセットの実験が行われ、MTGFlowはSOTA法を最大5.0AUROC%で上回っている。
論文 参考訳(メタデータ) (2022-08-03T14:38:19Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Anomaly Detection in Trajectory Data with Normalizing Flows [0.0]
本稿では,ニューラルネットワークを用いたデータから複雑な密度推定を可能にする,正規化フローに基づく手法を提案する。
提案手法は, 軌道の各セグメントに対して, 流れを正規化する重要な特徴である, 正確なモデル確率値を算出する。
実世界の軌道データを用いて, 正規化フローを用いた集約異常検出法(GRADINGS)を評価し, 従来の異常検出法と比較した。
論文 参考訳(メタデータ) (2020-04-13T14:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。