論文の概要: Information Extraction in Low-Resource Scenarios: Survey and Perspective
- arxiv url: http://arxiv.org/abs/2202.08063v5
- Date: Sat, 2 Dec 2023 10:23:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 02:10:30.623657
- Title: Information Extraction in Low-Resource Scenarios: Survey and Perspective
- Title(参考訳): 低資源シナリオにおける情報抽出:調査と展望
- Authors: Shumin Deng, Yubo Ma, Ningyu Zhang, Yixin Cao, Bryan Hooi
- Abstract要約: 情報抽出は構造化されていないテキストから構造化された情報を導き出そうとする。
本稿では,emphLLMおよびemphLLMに基づく低リソースIEに対するニューラルアプローチについて概説する。
- 参考スコア(独自算出の注目度): 60.67550275379953
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Information Extraction (IE) seeks to derive structured information from
unstructured texts, often facing challenges in low-resource scenarios due to
data scarcity and unseen classes. This paper presents a review of neural
approaches to low-resource IE from \emph{traditional} and \emph{LLM-based}
perspectives, systematically categorizing them into a fine-grained taxonomy.
Then we conduct empirical study on LLM-based methods compared with previous
state-of-the-art models, and discover that (1) well-tuned LMs are still
predominant; (2) tuning open-resource LLMs and ICL with GPT family is promising
in general; (3) the optimal LLM-based technical solution for low-resource IE
can be task-dependent. In addition, we discuss low-resource IE with LLMs,
highlight promising applications, and outline potential research directions.
This survey aims to foster understanding of this field, inspire new ideas, and
encourage widespread applications in both academia and industry.
- Abstract(参考訳): 情報抽出(IE)は構造化されていないテキストから構造化された情報を導き出そうとする。
本稿では,低リソースIEに対するニューラルアプローチを, \emph{ traditional} と \emph{LLM-based} の観点から概説し,それらを微粒な分類に体系的に分類する。
次に, 従来の技術モデルと比較して, LLMに基づく手法に関する実証的研究を行い, 1) 十分に調整されたLMが依然として支配的であり, (2) GPTファミリによるオープンソースLLMとICLのチューニングが一般的に期待されていること,(3) 低リソースIEのための最適なLCMベースの技術ソリューションがタスク依存であることを示す。
さらに,低リソースIEをLLMで論じ,将来性のあるアプリケーションを強調し,研究の方向性を概説する。
この調査は、この分野の理解を深め、新しいアイデアを刺激し、アカデミックと産業の両方で幅広い応用を促進することを目的としている。
関連論文リスト
- Exploring the landscape of large language models: Foundations, techniques, and challenges [8.042562891309414]
この記事では、コンテキスト内学習の力学と微調整アプローチのスペクトルについて光を当てている。
革新的な強化学習フレームワークを通じて、LLMが人間の好みとより緊密に連携する方法について検討する。
LLMデプロイメントの倫理的側面は議論され、マインドフルで責任あるアプリケーションの必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-18T08:01:20Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Quantitative knowledge retrieval from large language models [4.155711233354597]
大規模言語モデル(LLM)は、説得力のある自然言語配列を生成する能力について広く研究されている。
本稿では,データ解析作業を支援するための定量的知識検索のメカニズムとして,LLMの実現可能性について検討する。
論文 参考訳(メタデータ) (2024-02-12T16:32:37Z) - Clue-Guided Path Exploration: An Efficient Knowledge Base
Question-Answering Framework with Low Computational Resource Consumption [22.74267517598694]
知識ベースとLLMを効率的にマージするCGPE(Clue-Guided Path Exploration framework)を導入する。
CGPEは、人間が手動で知識を検索する手法にインスパイアされ、必要な知識経路を体系的に探索するための手がかりとして、質問からの情報を利用する。
オープンソースデータセットの実験では、CGPEは従来の手法よりも優れており、パラメータが少ないLCMに適用可能であることが明らかになった。
論文 参考訳(メタデータ) (2024-01-24T13:36:50Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
情報抽出は、平易な自然言語テキストから構造的知識を抽出することを目的としている。
生成型大規模言語モデル(LLM)は、テキストの理解と生成において顕著な能力を示した。
LLMは生成パラダイムに基づいたIEタスクに対して実行可能なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Which is better? Exploring Prompting Strategy For LLM-based Metrics [6.681126871165601]
本稿では,DSBA が提案する Prompting Large Language Models を Explainable Metrics 共有タスクとして記述する。
BLEUやROUGEのような従来の類似性に基づくメトリクスは、人間の評価に悪影響を与えており、オープンな生成タスクには適していない。
論文 参考訳(メタデータ) (2023-11-07T06:36:39Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
本稿では,Large Language Models(LLMs)のパワーと,PRISMA(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)の厳密な報告ガイドラインを組み合わせたAI対応方法論フレームワークを提案する。
厳密なSLRプロセスの結果として選択されたドメイン固有の学術論文にLCMを微調整することにより、提案するPRISMA-DFLLMレポートガイドラインは、より効率、再利用性、拡張性を達成する可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-15T02:52:50Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。