論文の概要: Bias and unfairness in machine learning models: a systematic literature
review
- arxiv url: http://arxiv.org/abs/2202.08176v1
- Date: Wed, 16 Feb 2022 16:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 14:28:38.801897
- Title: Bias and unfairness in machine learning models: a systematic literature
review
- Title(参考訳): 機械学習モデルにおけるバイアスと不公平:体系的文献レビュー
- Authors: Tiago Palma Pagano, Rafael Bessa Loureiro, Maira Matos Araujo,
Fernanda Vitoria Nascimento Lisboa, Rodrigo Matos Peixoto, Guilherme Aragao
de Sousa Guimaraes, Lucas Lisboa dos Santos, Gustavo Oliveira Ramos Cruz,
Ewerton Lopes Silva de Oliveira, Marco Cruz, Ingrid Winkler, Erick Giovani
Sperandio Nascimento
- Abstract要約: 本研究の目的は,機械学習モデルにおけるバイアスと不公平性に関する既存の知識を検討することである。
The Systematic Literature Reviewによると、2017年から2022年にかけて、Scoops、IEEE Xplore、Web of Science、Google Scholarの知識ベースで40の論文が出版された。
- 参考スコア(独自算出の注目度): 43.55994393060723
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of the difficulties of artificial intelligence is to ensure that model
decisions are fair and free of bias. In research, datasets, metrics,
techniques, and tools are applied to detect and mitigate algorithmic unfairness
and bias. This study aims to examine existing knowledge on bias and unfairness
in Machine Learning models, identifying mitigation methods, fairness metrics,
and supporting tools. A Systematic Literature Review found 40 eligible articles
published between 2017 and 2022 in the Scopus, IEEE Xplore, Web of Science, and
Google Scholar knowledge bases. The results show numerous bias and unfairness
detection and mitigation approaches for ML technologies, with clearly defined
metrics in the literature, and varied metrics can be highlighted. We recommend
further research to define the techniques and metrics that should be employed
in each case to standardize and ensure the impartiality of the machine learning
model, thus, allowing the most appropriate metric to detect bias and unfairness
in a given context.
- Abstract(参考訳): 人工知能の難しさの1つは、モデル決定が公平でバイアスのないことを保証することである。
研究では、アルゴリズムの不公平さと偏見を検出し緩和するためにデータセット、メトリクス、テクニック、ツールが適用される。
本研究では,機械学習モデルにおけるバイアスと不公平性に関する既存の知識,緩和方法,公平度指標,支援ツールについて検討することを目的とした。
The Systematic Literature Reviewによると、2017年から2022年にかけて、Scoops、IEEE Xplore、Web of Science、Google Scholarの知識ベースで40の論文が出版された。
その結果,ML技術のバイアスや不公平検出,緩和アプローチが多数存在し,文献で明確に定義された指標と,さまざまな指標が強調できることがわかった。
我々は、機械学習モデルの公平性を標準化し、確実にするために、各ケースで採用すべきテクニックとメトリクスを定義するために、さらなる研究を推奨する。
関連論文リスト
- Whither Bias Goes, I Will Go: An Integrative, Systematic Review of Algorithmic Bias Mitigation [1.0470286407954037]
機械学習(ML)モデルは不平等をバイアスし、持続し、悪化させる可能性があるという懸念が高まっている。
本稿では,MLアセスメントを開発し,バイアス軽減手法を適用した4段階モデルを提案する。
論文 参考訳(メタデータ) (2024-10-21T02:32:14Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Measuring, Interpreting, and Improving Fairness of Algorithms using
Causal Inference and Randomized Experiments [8.62694928567939]
本稿では,アルゴリズム決定の公平性を測り,解釈し,改善するためのMIIFフレームワークを提案する。
ランダム化実験を用いてアルゴリズムバイアスを測定し, 異なる処理, 異なる影響, 経済的価値の同時測定を可能にする。
また、ブラックボックスアルゴリズムの信念を正確に解釈し、蒸留する、説明可能な機械学習モデルを開発した。
論文 参考訳(メタデータ) (2023-09-04T19:45:18Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey [30.637712832450525]
ML分類器のバイアス軽減に関する合計341の論文を収集する。
本論文では,既存のバイアス緩和手法について検討する。
収集した知見に基づいて,新たなバイアス緩和手法の開発と評価を行う上で,実践者を支援することを望む。
論文 参考訳(メタデータ) (2022-07-14T17:16:45Z) - Metrics and methods for a systematic comparison of fairness-aware
machine learning algorithms [0.0]
この研究はこの種の最も包括的なものである。
フェアネス、予測性能、キャリブレーション品質、28種類のモデリングパイプラインの速度を考慮に入れている。
また,フェアネスを意識したアルゴリズムは,予測力の低下を伴わずにフェアネスを誘導できることがわかった。
論文 参考訳(メタデータ) (2020-10-08T13:58:09Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Do the Machine Learning Models on a Crowd Sourced Platform Exhibit Bias?
An Empirical Study on Model Fairness [7.673007415383724]
5つの異なるタスクに使用したKaggleから、40の上位モデルのベンチマークを作成しました。
これらのモデルに7つの緩和手法を適用し、公正性、緩和結果、および性能への影響を分析した。
論文 参考訳(メタデータ) (2020-05-21T23:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。