Towards Verifiable Federated Learning
- URL: http://arxiv.org/abs/2202.08310v1
- Date: Tue, 15 Feb 2022 09:52:25 GMT
- Title: Towards Verifiable Federated Learning
- Authors: Yanci Zhang and Han Yu
- Abstract summary: Federated learning (FL) is an emerging paradigm of collaborative machine learning that preserves user privacy while building powerful models.
Due to the nature of open participation by self-interested entities, FL needs to guard against potential misbehaviours by legitimate FL participants.
Verifiable federated learning has become an emerging topic of research that has attracted significant interest from the academia and the industry alike.
- Score: 15.758657927386263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is an emerging paradigm of collaborative machine
learning that preserves user privacy while building powerful models.
Nevertheless, due to the nature of open participation by self-interested
entities, it needs to guard against potential misbehaviours by legitimate FL
participants. FL verification techniques are promising solutions for this
problem. They have been shown to effectively enhance the reliability of FL
networks and help build trust among participants. Verifiable federated learning
has become an emerging topic of research that has attracted significant
interest from the academia and the industry alike. Currently, there is no
comprehensive survey on the field of verifiable federated learning, which is
interdisciplinary in nature and can be challenging for researchers to enter
into. In this paper, we bridge this gap by reviewing works focusing on
verifiable FL. We propose a novel taxonomy for verifiable FL covering both
centralised and decentralised FL settings, summarise the commonly adopted
performance evaluation approaches, and discuss promising directions towards a
versatile verifiable FL framework.
Related papers
- SoK: Challenges and Opportunities in Federated Unlearning [32.0365189539138]
This SoK paper aims to take a deep look at the emphfederated unlearning literature, with the goal of identifying research trends and challenges in this emerging field.
arXiv Detail & Related papers (2024-03-04T19:35:08Z) - FedCompetitors: Harmonious Collaboration in Federated Learning with
Competing Participants [41.070716405671206]
Federated learning (FL) provides a privacy-preserving approach for collaborative training of machine learning models.
It is crucial to select appropriate collaborators for each FL participant based on data complementarity.
It is imperative to consider the inter-individual relationships among FL-PTs where some FL-PTs engage in competition.
arXiv Detail & Related papers (2023-12-18T17:53:01Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
The evolution of privacy-preserving Federated Learning (FL) has led to an increasing demand for implementing the right to be forgotten.
The implementation of selective forgetting is particularly challenging in FL due to its decentralized nature.
Federated Unlearning (FU) emerges as a strategic solution to address the increasing need for data privacy.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Trustworthy Federated Learning: A Survey [0.5089078998562185]
Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI)
We provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy.
We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy.
arXiv Detail & Related papers (2023-05-19T09:11:26Z) - Bayesian Federated Learning: A Survey [54.40136267717288]
Federated learning (FL) demonstrates its advantages in integrating distributed infrastructure, communication, computing and learning in a privacy-preserving manner.
The robustness and capabilities of existing FL methods are challenged by limited and dynamic data and conditions.
BFL has emerged as a promising approach to address these issues.
arXiv Detail & Related papers (2023-04-26T03:41:17Z) - Towards Interpretable Federated Learning [19.764172768506132]
Federated learning (FL) enables multiple data owners to build machine learning models collaboratively without exposing their private local data.
It is important to balance the need for performance, privacy-preservation and interpretability, especially in mission critical applications such as finance and healthcare.
We conduct comprehensive analysis of the representative IFL approaches, the commonly adopted performance evaluation metrics, and promising directions towards building versatile IFL techniques.
arXiv Detail & Related papers (2023-02-27T02:06:18Z) - VeriFi: Towards Verifiable Federated Unlearning [59.169431326438676]
Federated learning (FL) is a collaborative learning paradigm where participants jointly train a powerful model without sharing their private data.
Leaving participant has the right to request to delete its private data from the global model.
We propose VeriFi, a unified framework integrating federated unlearning and verification.
arXiv Detail & Related papers (2022-05-25T12:20:02Z) - FedComm: Federated Learning as a Medium for Covert Communication [56.376997104843355]
Federated Learning (FL) is a solution to mitigate the privacy implications related to the adoption of deep learning.
This paper thoroughly investigates the communication capabilities of an FL scheme.
We introduce FedComm, a novel multi-system covert-communication technique.
arXiv Detail & Related papers (2022-01-21T17:05:56Z) - Towards Fairness-Aware Federated Learning [19.73772410934193]
We propose a taxonomy of Fairness-Aware Federated Learning (FAFL) approaches covering major steps in Federated Learning.
We discuss the main metrics for experimentally evaluating the performance of FAFL approaches.
arXiv Detail & Related papers (2021-11-02T20:20:28Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.