SoK: Challenges and Opportunities in Federated Unlearning
- URL: http://arxiv.org/abs/2403.02437v2
- Date: Wed, 5 Jun 2024 19:00:03 GMT
- Title: SoK: Challenges and Opportunities in Federated Unlearning
- Authors: Hyejun Jeong, Shiqing Ma, Amir Houmansadr,
- Abstract summary: This SoK paper aims to take a deep look at the emphfederated unlearning literature, with the goal of identifying research trends and challenges in this emerging field.
- Score: 32.0365189539138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL), introduced in 2017, facilitates collaborative learning between non-trusting parties with no need for the parties to explicitly share their data among themselves. This allows training models on user data while respecting privacy regulations such as GDPR and CPRA. However, emerging privacy requirements may mandate model owners to be able to \emph{forget} some learned data, e.g., when requested by data owners or law enforcement. This has given birth to an active field of research called \emph{machine unlearning}. In the context of FL, many techniques developed for unlearning in centralized settings are not trivially applicable! This is due to the unique differences between centralized and distributed learning, in particular, interactivity, stochasticity, heterogeneity, and limited accessibility in FL. In response, a recent line of work has focused on developing unlearning mechanisms tailored to FL. This SoK paper aims to take a deep look at the \emph{federated unlearning} literature, with the goal of identifying research trends and challenges in this emerging field. By carefully categorizing papers published on FL unlearning (since 2020), we aim to pinpoint the unique complexities of federated unlearning, highlighting limitations on directly applying centralized unlearning methods. We compare existing federated unlearning methods regarding influence removal and performance recovery, compare their threat models and assumptions, and discuss their implications and limitations. For instance, we analyze the experimental setup of FL unlearning studies from various perspectives, including data heterogeneity and its simulation, the datasets used for demonstration, and evaluation metrics. Our work aims to offer insights and suggestions for future research on federated unlearning.
Related papers
- Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - Towards Interpretable Federated Learning [19.764172768506132]
Federated learning (FL) enables multiple data owners to build machine learning models collaboratively without exposing their private local data.
It is important to balance the need for performance, privacy-preservation and interpretability, especially in mission critical applications such as finance and healthcare.
We conduct comprehensive analysis of the representative IFL approaches, the commonly adopted performance evaluation metrics, and promising directions towards building versatile IFL techniques.
arXiv Detail & Related papers (2023-02-27T02:06:18Z) - When Do Curricula Work in Federated Learning? [56.88941905240137]
We find that curriculum learning largely alleviates non-IIDness.
The more disparate the data distributions across clients the more they benefit from learning.
We propose a novel client selection technique that benefits from the real-world disparity in the clients.
arXiv Detail & Related papers (2022-12-24T11:02:35Z) - Vertical Federated Learning: A Structured Literature Review [0.0]
Federated learning (FL) has emerged as a promising distributed learning paradigm with an added advantage of data privacy.
In this paper, we present a structured literature review discussing the state-of-the-art approaches in VFL.
arXiv Detail & Related papers (2022-12-01T16:16:41Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Towards Multi-Objective Statistically Fair Federated Learning [1.2687030176231846]
Federated Learning (FL) has emerged as a result of data ownership and privacy concerns.
We propose a new FL framework that is able to satisfy multiple objectives including various statistical fairness metrics.
arXiv Detail & Related papers (2022-01-24T19:22:01Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
Federated Learning is a novel framework that allows multiple devices or institutions to train a machine learning model collaboratively while preserving their data private.
In this work, we formally classify data statistical heterogeneity and review the most remarkable learning strategies that are able to face it.
At the same time, we introduce approaches from other machine learning frameworks, such as Continual Learning, that also deal with data heterogeneity and could be easily adapted to the Federated Learning settings.
arXiv Detail & Related papers (2021-11-26T09:57:11Z) - Privacy-Preserving Self-Taught Federated Learning for Heterogeneous Data [6.545317180430584]
Federated learning (FL) was proposed to enable joint training of a deep learning model using the local data in each party without revealing the data to others.
In this work, we propose an FL method called self-taught federated learning to address the aforementioned issues.
In this method, only latent variables are transmitted to other parties for model training, while privacy is preserved by storing the data and parameters of activations, weights, and biases locally.
arXiv Detail & Related papers (2021-02-11T08:07:51Z) - Mitigating Bias in Federated Learning [9.295028968787351]
In this paper, we discuss causes of bias in federated learning (FL)
We propose three pre-processing and in-processing methods to mitigate bias, without compromising data privacy.
We conduct experiments over several data distributions to analyze their effects on model performance, fairness metrics, and bias learning patterns.
arXiv Detail & Related papers (2020-12-04T08:04:12Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources.
The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion.
This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value.
arXiv Detail & Related papers (2020-09-14T04:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.