論文の概要: Federated Stochastic Gradient Descent Begets Self-Induced Momentum
- arxiv url: http://arxiv.org/abs/2202.08402v1
- Date: Thu, 17 Feb 2022 02:01:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-19 04:29:33.582077
- Title: Federated Stochastic Gradient Descent Begets Self-Induced Momentum
- Title(参考訳): フェデレート確率勾配降下は自己誘導運動量を得る
- Authors: Howard H. Yang, Zuozhu Liu, Yaru Fu, Tony Q. S. Quek, H. Vincent Poor
- Abstract要約: Federated Learning(FL)は、モバイルエッジシステムに適用可能な、新興の機械学習手法である。
このような条件下での勾配降下(SGD)への走行は,大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
- 参考スコア(独自算出の注目度): 151.4322255230084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is an emerging machine learning method that can be
applied in mobile edge systems, in which a server and a host of clients
collaboratively train a statistical model utilizing the data and computation
resources of the clients without directly exposing their privacy-sensitive
data. We show that running stochastic gradient descent (SGD) in such a setting
can be viewed as adding a momentum-like term to the global aggregation process.
Based on this finding, we further analyze the convergence rate of a federated
learning system by accounting for the effects of parameter staleness and
communication resources. These results advance the understanding of the
Federated SGD algorithm, and also forges a link between staleness analysis and
federated computing systems, which can be useful for systems designers.
- Abstract(参考訳): フェデレーション学習(federated learning, ffl)は,サーバとクライアントのホストが,プライバシに敏感なデータを直接公開することなく,クライアントのデータや計算リソースを活用した統計モデルを協調的にトレーニングする,モバイルエッジシステムに適用可能な,新たなマシンラーニング手法である。
このような条件下での確率勾配降下 (SGD) の実行は, 大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
そこで本研究では,パラメータの安定度と通信資源の影響を考慮し,フェデレーション学習システムの収束率をさらに解析する。
これらの結果はフェデレーションsgdアルゴリズムの理解を前進させ、またシステム設計者にとって有用なステイネス解析とフェデレーション計算システムとのリンクを分岐させる。
関連論文リスト
- Gradient-Congruity Guided Federated Sparse Training [31.793271982853188]
Federated Learning(FL)は、データプライバシを保持しながら、このプロセスを容易にする分散機械学習技術である。
FLはまた、リソース制約のあるデバイスに関する高い計算コストや通信コストといった課題に直面している。
本研究では,動的スパーストレーニングと勾配一致検査を統合したFedSGC(Gradient-Congruity Guided Federated Sparse Training)を提案する。
論文 参考訳(メタデータ) (2024-05-02T11:29:48Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Fed-QSSL (Federated Quantization-based self-supervised learning scheme) はFLシステムの不均一性に対処するために設計された。
Fed-QSSLは、デ量子化、重み付けされたアグリゲーション、再量子化をデプロイし、最終的に、各クライアントのデバイスのデータ分散と特定のインフラストラクチャの両方にパーソナライズされたモデルを作成する。
論文 参考訳(メタデータ) (2023-12-20T19:11:19Z) - Efficient Cross-Domain Federated Learning by MixStyle Approximation [0.3277163122167433]
ハードウェア制約環境におけるクライアント適応のための,プライバシ保護,リソース効率の高いフェデレーション学習の概念を導入する。
このアプローチには、ソースデータに対するサーバモデル事前トレーニングと、ローエンドクライアントによるターゲットデータへの微調整が含まれる。
予備的な結果は,下流タスクにおける競合性能を維持しながら,計算コストと伝送コストを削減できることを示唆している。
論文 参考訳(メタデータ) (2023-12-12T08:33:34Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習フレームワークとして多くの注目を集めている。
本稿では、トラグラー問題を緩和するために、SCFL(Coded Federated Learning)というコード付きフェデレーション学習フレームワークを提案する。
我々は、相互情報差分プライバシー(MI-DP)によるプライバシー保証を特徴付け、連合学習における収束性能を分析する。
論文 参考訳(メタデータ) (2022-01-25T04:43:29Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。