Quantum Membrane Phases in Synthetic Lattices of Cold Molecules or
Rydberg Atoms
- URL: http://arxiv.org/abs/2202.08540v1
- Date: Thu, 17 Feb 2022 09:32:32 GMT
- Title: Quantum Membrane Phases in Synthetic Lattices of Cold Molecules or
Rydberg Atoms
- Authors: Chunhan Feng, Hannah Manetsch, Valery G. Rousseau, Kaden R. A. Hazzard
and Richard Scalettar
- Abstract summary: We calculate properties of dipolar interacting ultracold molecules or Rydberg atoms in a semi-synthetic three-dimensional configuration.
We find a finite-temperature transition at sufficiently large $V$, as well as a quantum phase transition -- a critical value $V_c$ below which the transition temperature vanishes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We calculate properties of dipolar interacting ultracold molecules or Rydberg
atoms in a semi-synthetic three-dimensional configuration -- one synthetic
dimension plus a two-dimensional real space optical lattice or periodic
microtrap array -- using the stochastic Green function Quantum Monte Carlo
method. Through a calculation of thermodynamic quantities and appropriate
correlation functions, along with their finite size scalings, we show that
there is a second order transition to a low temperature phase in which
two-dimensional `sheets' form in the synthetic dimension of internal rotational
or electronic states of the molecules or Rydberg atoms, respectively.
Simulations for different values of the interaction $V$, which acts between
atoms or molecules that are adjacent both in real and synthetic space, allow us
to compute a phase diagram. We find a finite-temperature transition at
sufficiently large $V$, as well as a quantum phase transition -- a critical
value $V_c$ below which the transition temperature vanishes.
Related papers
- Finite-Temperature Quantum Matter with Rydberg or Molecule Synthetic
Dimensions [0.0]
We compute the phase diagram of a system of ultracold atoms (or polar molecules) with a set of Rydberg states as a synthetic dimension.
For system sizes with more than six synthetic sites and attractive interactions, we find that the thermal transitions can be first or second order.
By examining the dependence of the tri-critical point and other special points of the phase boundary on the synthetic dimension size, we shed light on the physics for thermodynamically large synthetic dimension.
arXiv Detail & Related papers (2023-07-30T16:28:43Z) - Quantum Simulation of an Extended Dicke Model with a Magnetic Solid [3.152441795183668]
We show the existence of a novel atomically ordered phase in addition to the superradiant and normal phases.
These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body condensed matter systems.
arXiv Detail & Related papers (2023-02-12T23:55:26Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Contrasting pseudo-criticality in the classical two-dimensional
Heisenberg and $\mathrm{RP}^2$ models: zero-temperature phase transition
versus finite-temperature crossover [0.0]
We compare the two-dimensional classical Heisenberg and $mathrmRP2$ models.
For the Heisenberg model, we find no signs of a finite-temperature phase transition.
For the $mathrmRP2$ model, we observe an abrupt onset of scaling behaviour.
arXiv Detail & Related papers (2022-02-15T17:35:15Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Producing and storing spin-squeezed states and
Greenberger-Horne-Zeilinger states in a one-dimensional optical lattice [0.0]
We study the generation and storage of spin squeezed states, as well as more entangled states up to macroscopic superpositions, in a system composed of a few ultra-cold atoms trapped in a one-dimensional optical lattice.
The system, initially in the superfluid phase with each atom in a superposition of two internal states, is first dynamically entangled by atom-atom interactions then adiabatically brought to the Mott-insulator phase with one atom per site where the quantum correlations are stored.
arXiv Detail & Related papers (2020-05-06T09:22:34Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Quantum Phase Diagrams of Matter-Field Hamiltonians I: Fidelity, Bures
Distance, and Entanglement [0.0]
A general procedure is established to calculate the quantum phase diagrams for finite matter-field Hamiltonian models.
The existence of a quantum phase diagram for a finite system can be established.
arXiv Detail & Related papers (2020-02-06T19:55:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.